Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T13:15:04.679Z Has data issue: false hasContentIssue false

Synthesis of Carbon Tubes Using Microwave Plasma-assisted Chemical Vapor Deposition

Published online by Cambridge University Press:  31 January 2011

Qing Zhang
Affiliation:
Microelectronics Centre, Nanyang Technological University, Singapore
S. F. Yoon
Affiliation:
Microelectronics Centre, Nanyang Technological University, Singapore
J. Ahn
Affiliation:
Microelectronics Centre, Nanyang Technological University, Singapore
Bo Gan
Affiliation:
Microelectronics Centre, Nanyang Technological University, Singapore
Rusli
Affiliation:
Microelectronics Centre, Nanyang Technological University, Singapore
Ming-Bin Yu
Affiliation:
Microelectronics Centre, Nanyang Technological University, Singapore
Get access

Abstract

Carbon tubes were successfully produced using microwave plasma-enhanced chemical vapor deposition on silicon, quartz, and ceramic substrates. The carbon tubes, about 80–100 nm in diameter and a few tens of microns in length, were formed under methane and hydrogen plasma at 720 °C with the aid of iron oxide particles. In this approach, an average tube density of about 109 cm−2 was obtained. The crooked and nonuniform diameters of some tubes suggested that they were composed of incompletely crystallized graphitic shells due to existing defects. The characteristic of the tubes grown upward on the silicon substrate accounted for a remarkably large electron field emission current of 0.1 mA/cm2 from the surface of the tube sample at a low turn-on field of 3 V/μm.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S., Nature 354, 56 (1991).CrossRefGoogle Scholar
2.Calvert, P., in Carbon Nanotubes: Preparation and Properties, edited by Ebbessen, T.W., (CRC, Boca Raton, FL, 1997), p. 277.Google Scholar
3.Ebbesen, T.W. and Ajayan, P.M., Nature 358, 220 (1992).CrossRefGoogle Scholar
4.Ajayan, P.M. and Iijima, S., Nature 361, 33 (1993).CrossRefGoogle Scholar
5.Kotosonov, A.S. and Shilo, D.V., Carbon 36, 1694 (1998).CrossRefGoogle Scholar
6.Heng, H., Zhu, L., Hao, G., and Sheng, R., Carbon 36, 259 (1998).Google Scholar
7.Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Colbert, D.T., Scuseria, G., Tomanek, D., Fischer, J.E., and Smalley, R.E., Science 273, 483 (1996).CrossRefGoogle Scholar
8.Rao, A.M., Richter, E., Bandow, S., Chase, B., Eklund, P.C., Williams, K.A., Fang, S., Subbaswamy, K.R., Menon, M., Thess, A., Smalley, R.E., Dresselhaus, G., and Dresselhaus, M.S., Science 275, 187 (1997).CrossRefGoogle Scholar
9.Kuzmany, H., Burger, B., Thess, A., and Smalley, R.E., Carbon 36, 709 (1998).CrossRefGoogle Scholar
10.Chernozitonskii, L.A., Kosakovskaja, Z. Ja., Federov, E.A., and Panov, V.I., Phys. Lett. A 197, 40 (1995).CrossRefGoogle Scholar
11.Laplaze, D., Bernuer, P., Maser, W.R., Flament, G., and Guillard, T., Carbon 36, 685 (1998).CrossRefGoogle Scholar
12.Yacaman, M-J., Miki-Yoshida, M., Rendon, L., and Santiesteban, J.G., Appl. Phys. Lett. 62, 657 (1993).CrossRefGoogle Scholar
13.Benito, A.M., Maniette, Y., Munoz, E., and Martinez, M.T., Carbon 35, 681 (1998).CrossRefGoogle Scholar
14.Hsu, W.K., Hare, J.P., Terrones, M., Harris, P.J.F, Kroto, H.W., and Walton, D.R.M, Nature 377, 687 (1995).CrossRefGoogle Scholar
15.Kong, J., Soh, H.T., Cassell, A.M., Quate, C.F., and Dai, H., Nature 395, 878 (1998).CrossRefGoogle Scholar
16.Qin, L.C., J. Mater. Sci. Lett. 16, 457 (1997).CrossRefGoogle Scholar
17.Zhang, Q., Yoon, S.F., Ahn, J., Gan, Bo, Rusli, , and Yu, M-B., J. Phys. Chem. Solid (in press).Google Scholar
18.Hiura, H., Ebbesen, T.W., Tanigaki, K., and Takahashi, H., Chem. Phys. Lett. 202, 509 (1993).CrossRefGoogle Scholar
19.Kastner, J., Pichler, T., Kuzmany, H., Curran, S., Blau, W., Weldon, D.N., Delamesiere, M., Draper, S., and Zandbergen, H., Chem. Phys. Lett. 221, 53 (1994).CrossRefGoogle Scholar
20.Nemanich, R.J. and Solin, S.A., Phys. Rev. B 20, 392 (1979).CrossRefGoogle Scholar
21.Bacsa, W.S., de Heer, W.A., Ugarte, D., and Chatelain, A., Chem. Phys. Lett. 211, 346 (1993).CrossRefGoogle Scholar
22.Jishi, R.A., Venkataraman, L., Dresselhaus, M.S., and Dresselhaus, G., Phys. Rev. B 51, 11176 (1995).CrossRefGoogle Scholar
23.Bernier, P., Maser, W., Journet, C., Loiseau, A., de la Chapelle, M.L., Lefrant, S., Lee, R., and Fischer, J.E., Carbon 36, 675 (1998).CrossRefGoogle Scholar
24.Tuinstra, F. and Koenic, J.L., J. Chem. Phys. 53, 1126 (1970).CrossRefGoogle Scholar
25.Bacsa, W.S., Ugarte, D., Chatelain, A., and de Heer, W.A., Phys. Rev. B 50, 15473 (1994).CrossRefGoogle Scholar
26.Saito, Y., Yoshikawa, T., Bandow, S., Tomita, M., and Hayashi, T., Phys. Rev. B 48, 1907 (1993).CrossRefGoogle Scholar
27.Zhou, O., Fleming, R.M., Murphy, D.W., Chen, C.H., Haddon, R.C., Ramirez, A.P., and Glarum, S.H., Science 263, 1744 (1994).CrossRefGoogle Scholar
28.Reznik, D., Olk, C.H., Neumann, D.A., and Coplry, J.R.D, Phys. Rev. B 52, 116 (1995).CrossRefGoogle Scholar
29.Hiura, H., Ebbesen, T.W., Fujita, J., Tanigaki, K., Takahashi, H., and Tanada, T., Nature 367, 148 (1994).CrossRefGoogle Scholar
30.Zhang, X.F., Zhang, X.B., Van Tendeloo, G., Amelinckx, S., Op de Beeck, M., and Van Landuyt, J., J. Cryst. Growth 130, 368 (1993).CrossRefGoogle Scholar
31.Saito, Y., in Carbon Nanotubes: Preparation and Properties, edited by Ebbessen, T.W. (CRC, Boca Raton, FL, 1997), p. 249.Google Scholar
32.Baker, F.S., Osborm, A.R., and Williams, J., Nature 239, 96 (1972).CrossRefGoogle Scholar
33.Rinzler, A.G., Hafner, J.H., Nikolaev, P., Lou, L., Kim, S.G., Tomanek, D., Nordlander, P., Colbert, D.T., and Smalley, R.E., Science 269, 1550 (1995).CrossRefGoogle Scholar
34.de Heer, W.A., Chatelain, A., and Ugarte, D., Science 270, 1179 (1995).CrossRefGoogle Scholar
35.Gulyaev, Y.V., Chernozatonsii, L.A., Kosakovskaja, Z.J., Sinitsyn, N.I., Torgashov, G.V., and Zakharchenko, Y.F., J. Vac. Sci. Technol. B13, 435 (1995).CrossRefGoogle Scholar
36.Chernozatonsii, L.A., Kukoviskii, E.F., Musatov, A.L., Ormint, A.B., Izraeliants, K.R., and L'vov, S.G., Carbon 36, 713 (1998).CrossRefGoogle Scholar
37.Cheah, L.K., Shi, X., Tay, B.K., Silva, S.R.P, and Sun, Z., Diamond Relat. Mater. 7, 640 (1998).CrossRefGoogle Scholar
38.Zhirnov, V.V. and Hren, J.J., MRS Bull. 23(9), 42 (1998).CrossRefGoogle Scholar