Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T16:19:42.187Z Has data issue: false hasContentIssue false

Synthesis of aluminum oxide-based ceramics by laser photoinduced reactions from gaseous precursors

Published online by Cambridge University Press:  31 January 2011

R. Alexandrescu
Affiliation:
ENEA, Dip. Innovazione, Settore Fisica Applicata, Centro Ricerche Frascati, C.P. 65, 00044 Frascati, Rome, Italy
E. Borsella
Affiliation:
ENEA, Dip. Innovazione, Settore Fisica Applicata, Centro Ricerche Frascati, C.P. 65, 00044 Frascati, Rome, Italy
S. Botti
Affiliation:
ENEA, Dip. Innovazione, Settore Fisica Applicata, Centro Ricerche Frascati, C.P. 65, 00044 Frascati, Rome, Italy
M. P. Cesile
Affiliation:
ENEA, Dip. Innovazione, Settore Fisica Applicata, Centro Ricerche Frascati, C.P. 65, 00044 Frascati, Rome, Italy
S. Martelli
Affiliation:
ENEA, Dip. Innovazione, Settore Fisica Applicata, Centro Ricerche Frascati, C.P. 65, 00044 Frascati, Rome, Italy
R. Giorgi
Affiliation:
ENEA, Dip. Innovazione, Settore Nuovi Materiali, Centro Ricerche Casaccia, C.P. 2400, I-00100 Rome, Italy
S. Turtù
Affiliation:
ENEA, Dip. Innovazione, Settore Nuovi Materiali, Centro Ricerche Casaccia, C.P. 2400, I-00100 Rome, Italy
G. Zappa
Affiliation:
ENEA, Dip. Innovazione, Settore Nuovi Materiali, Centro Ricerche Casaccia, C.P. 2400, I-00100 Rome, Italy
Get access

Abstract

Laser-driven synthesis of Al2O3 based ceramic powders from gaseous precursors has been accurately investigated. Different concentrations of the reactant gaseous precursors are shown to influence both the process yield and the synthesized powder composition. Depending on the relative concentration of TMA: Al(CH3)3 and N2O, the process leads either to the formation of nanocrystalline γ−Al2O3 with large free carbon contamination and traces of the Al3O3Nphase or to the formation of a mixed γ−Al2O3, Al2OC compound. The different reaction paths have been attributed to the intermediate formation of aluminum carbide. Particular attention has been paid to the gaseous reaction products to correctly interpret the source of carbon contamination observed in the formed powders. Calcining at moderate (900 °C) and high (1400 °C) temperatures induces nanosized γ−Al2O3 powder and the γα-Al2O3 transition with particle coalescence and growth.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cannon, W. R., Danforth, S. C., Flinth, J. H., Haggerty, J. S., and Marra, R. A., J. Am. Ceram. Soc. 65, 324330 (1982).Google Scholar
2.Haggerty, J. S. and Bowen, H. K., MIT Report 1985, Grant NAG3-312.Google Scholar
3.Fantoni, R., Borsella, E., Piccirillo, S., Ceccato, R., and Enzo, S., J. Mater. Res. 5, 143 (1990).CrossRefGoogle Scholar
4.Borsella, E., Botti, S., Fantoni, R., Alexandrescu, R., Morjan, I., Papescu, C., Dikonimos, T., Giorgi, R., and Enzo, S., J. Mater. Res. 7, 2257 (1992).CrossRefGoogle Scholar
5.Dagani, R., Chem. Eng. News 23, 16 (1992).Google Scholar
6.Borsella, E., Botti, S., Cesile, M. C., Martelli, S., Giorgi, R., Turtù, S., Alexandrescu, R., and Morjan, I., in 4th Conf. in Optics (ROMOPTO'94), edited by Vlad, V. I., Proc. SPIE 2461 124 (1995).Google Scholar
7.Borsella, E., Botti, S., Giorgi, R., Martelli, S., Turtù, S., and Zappa, G., Appl. Phys. Lett. 63 (10), 1345 (1993).Google Scholar
8.Borsella, E., Botti, S., Cesile, M. C., Martelli, S., Nannetti, C. A., Giorgi, R., Turtù, S., Zappa, G., and Alexandrescu, R., J. Nanostr. Mater. 6, 341 (1995).CrossRefGoogle Scholar
9.Launay, G., Orange, G., Geuriot, P., Thevenet, F., and Fantozzi, G., J. Mater. Sci. Lett. 3, 890 (1981).Google Scholar
10.Herzberg, G., Molecular Spectra and Molecular Structure (von Nostrand Co., Princeton, NJ, 1945), Vol. III.Google Scholar
11.Mole, T. and Jeffrey, E. A., Organoaluminum Compounds (Elsevier Publ. Co., New York, 1972).Google Scholar
12.Niquist, R. A. and Kugel, R. O., IR Spectra of Inorganic Compounds (Academic Press, New York, 1971).Google Scholar
13.Bou, M., Martin, J. M., Th. Le Mogne, and Vovelle, L., Appl. Surf. Sci. 47, 249 (1991).Google Scholar
14.Akhter, S., Zhou, X. L., and White, J. M., Appl. Surf. Sci. 37, 201 (1985).Google Scholar
15.Ernst, K. H., Patscheider, J., Homert, R., and Tobler, M., Surf. Interf. Anal. 21, 32 (1994).CrossRefGoogle Scholar
16.Marcus, P., Hinner, C., Imbert, D., and Siffre, J. M., Surf. Interf. Anal. 19, 127 (1992).Google Scholar
17.Herzberg, G., Molecular Spectra and Molecular Structure (von Nostrand Reinhold, New York, 1966), Vol. III.Google Scholar
18.Preston, K. F. and Barr, R. F., J. Chem. Phys. 54, 3347 (1971).CrossRefGoogle Scholar
19.Suzuki, N., Anayama, H., Nasu, K., Tsubouki, K., and Mikoshiba, N., Jpn. J. Appl. Phys. 25, 1236 (1986).Google Scholar
20.McGraw-Hill Encyclopedia of Chemistry, edited by Parker, S. P. (McGraw-Hill Book Co., New York, St. Louis, San Francisco, 1983).Google Scholar
21.Flickstein, J., Bourcè, J. E., Bresse, J. F., and Pougnet, A. M., in Laser and Particle-Beam Chemical Processing for Microelectronics, edited by Ehrlich, D. J., Higashi, G. S., and Oprysko, M. M. (Mater. Res. Soc. Symp. Proc. 101, Pittsburgh, PA, 1988), p. 49.Google Scholar
22.Solanski, R., Ritchie, W. H., and Collins, G. J., Appl. Phys. Lett. 43, 454 (1983).Google Scholar
23. JANAF thermochemical tables, NSRDS-NBS 37, June 1971.Google Scholar
24.Cox, J. H. and Pidgeon, L. M., Can. J. Chem. 41, 671 (1963).CrossRefGoogle Scholar
25.Durrant, P. J. and Burrant, P., Introduction to Advanced Inorganic Chemistry, edited by Clowes, W. C. (London, 1962).Google Scholar
26.Unstead, M. E., Talley, L. D., Tevault, D. E., and Line, M. C., Opt. Eng. 19, 94 (1980).Google Scholar