Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T12:46:32.655Z Has data issue: false hasContentIssue false

Synthesis and thermodynamic evaluation of intermetallic Mg-Ni/Mg-Cu nanoscale powders

Published online by Cambridge University Press:  31 January 2011

Xing-Long Dong*
Affiliation:
School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
M.K. Lei
Affiliation:
School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nanometer-sized intermetallic Mg-Ni and Mg-Cu compound powders were prepared by a physical vapor deposition method (arc discharge) and characterized by means of x-ray diffraction and transmission electron microscopy. Based on an empirical specific heat equation, the effective heat of formation and its temperature dependence were calculated to explain phase formation in nanoscale powders of the binary Mg-Ni and Mg-Cu systems. It is shown that theoretic calculations are in good agreement with the experimental observations.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Zaluska, A., Zaluski, L., Tessier, P., and Ström-Olsen, J.O.: Nanocrystalline magnesium for hydrogen storage. J. Alloys Compd. 288, 217 (1999).CrossRefGoogle Scholar
2Bérubé, V., Radtke, G., Dresselhaus, M., and Chen, G.: Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review. Int. J. Energy Res. 31, 637 (2007).CrossRefGoogle Scholar
3Andrievski, R.A.: Hydrogen in nanostructures. Phys. Usp. 50, 691 (2007).CrossRefGoogle Scholar
4Saha, S.K., Howell, R.S., and Hatalis, M.K.: Silicidation reactions with Co-Ni bilayers for low thermal budget microelectronic applications. Thin Solid Films 347, 278 (1999).CrossRefGoogle Scholar
5Chen, T., Chang, H.W., and Lei, M.K.: Prediction of intermetallics formation during metal ion implantation into Al at elevated temperature. Nucl. Instrum. Methods Phys. Res., Sect. B 240, 653 (2005).CrossRefGoogle Scholar
6Pretorius, R., Reus, R. de, Vredenberg, A.M., and Saris, F.W.: Use of the effective heat of formation rule for predicting phase formation sequence in Al-Ni systems. Mater. Lett. 9, 494 (1990).CrossRefGoogle Scholar
7Pretorius, R., Vredenberg, A.M., and Saris, F.W.: Prediction of phase formation sequence and phase stability in binary. J. Appl. Phys. 70, 3636 (1991).CrossRefGoogle Scholar
8Pretorius, R., Theron, C.C., Marais, T.K., and Ras, H.A.: Evaluation of anomalies during nickel and titanium silicide formation using the effective heat of formation model. Mater. Chem. Phys. 36, 31 (1993).CrossRefGoogle Scholar
9Pretorius, R., Marais, T.K., and Theron, C.C.: First nucleation rule for solid-state nucleation in metal-metal thin-film systems. Mater. Sci. Eng., R 10, 1 (1993).Google Scholar
10Pretorius, R. and Mayer, J.W.: Silicide formation by concentration controlled phase selection. J. Appl. Phys. 81, 2448 (1997).CrossRefGoogle Scholar
11Shim, J.Y., Kwak, J.S., Chi, E.J., Baik, H.K., and Lee, S.M.: Formation of amorphous and crystalline phases, and phase transition by solid-state reaction in Zr/Si multilayer thin films. Thin Solid Films 269, 102 (1995).CrossRefGoogle Scholar
12Moore, H.J., Olson, D.L., and Noufi, R.: Use of the effective heat of formation model to determine phase formation sequences of In-Se, Ga-Se, Cu-Se, and Ga-In multilayer thin films. J. Electron. Mater. 27, 1334 (1998).CrossRefGoogle Scholar
13Laik, A., Bhanumurthy, K., and Kale, G.B.: Intermetallics in the Zr-Al diffusion zone. Intermetallics 12, 69 (2004).CrossRefGoogle Scholar
14Xu, L., Cui, Y.Y., Hao, Y.L., and Yang, R.: Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples. Mater. Sci. Eng., A 435, 638 (2006).CrossRefGoogle Scholar
15Huang, G.S. and Xu, Z.H.: An experiential equation of heat capacity for intermetallic compounds. Chin. Sci. Bull. 23, 1793 (1996).Google Scholar
16Dong, X.L., Zhang, Z.D., Zhao, X.G., Chuang, Y.C., Jin, S.R., and Sun, W.M.: The preparation and characterization of ultrafine Fe-Ni particles. J. Mater. Res. 14, 398 (1999).CrossRefGoogle Scholar
17Lei, J.P., Dong, X.L., Zhu, X.G., Lei, M.K., Huang, H., Zhang, X.F., Lu, B., Park, W.J., and Chung, H.S.: Formation and characterization of intermetallic Fe-Sn nanoscale powders synthesized by an arc discharge method. Intermetallics 15, 1589 (2007).CrossRefGoogle Scholar
18Islam, F. and Medraj, M.: The phase equilibria in the Mg–Ni–Ca system. Calphad 29, 289 (2005).CrossRefGoogle Scholar
19Nayeb-Hashemi, A.A. and Clark, J.B.: The Cu-Mg (copper-magnesium) system. Bull. Alloy Phase Diagrams 5, 36 (1984).CrossRefGoogle Scholar
20Gaskell, D.R.: Introduction to the Thermodynamics of Materials (Taylor & Francis, Washington, 1995), p. 128.Google Scholar
21Zhang, Z., , X.X., and Jiang, Q.: Finite size effect on melting enthalpy and melting entropy of nanocrystals. Physica B 270, 249 (1999).CrossRefGoogle Scholar
22Qi, W.H. and Wang, M.P.: Size and shape dependent melting temperature of metallic nanoparticles. Mater. Chem. Phys. 88, 280 (2004).CrossRefGoogle Scholar
23Cao, L.F., Wang, M.P., Xie, D., Li, Z., and Xu, G.Y.: Melting-thermodynamic characteristics of Fe, Co, Ni magnetic nanocrys-tals. Mod. Phys. Lett. B 19, 1253 (2005).CrossRefGoogle Scholar
24Harmal, P., Kolsis, I., Laczkó, L., and Bartha, L.: Melting and phase transformation of hardmetal powders. Solid State Ionics 141, 157 (2001).CrossRefGoogle Scholar
25Liang, Y.J. and Che, Y.C.: Handbook of Thermodynamic Data of Inorganic Substance (Northeastern University Press, Shengyang, 1993) (in Chinese).Google Scholar
26Kubaschewski, O. and Alcock, C.B.: Metallurgical Thermochemistry (Pergamon Press, Oxford, 1979), p. 268.Google Scholar
27Likhachev, V.N., Vinogradov, G.A., and Alymov, M.I.: Anomalous heat capacity of nanoparticles. Phys. Lett. A 357, 236 (2006).CrossRefGoogle Scholar
28Wang, B.X., Zhou, L.P., and Peng, X.F.: Surface and size effects on the specific heat capacity of nanoparticles. Int. J. Thermophys. 27, 139 (2006).CrossRefGoogle Scholar
29Turi, T. and Erb, U.: Thermal expansion and heat capacity of porosity-free nanocrystalline materials. Mater. Sci. Eng., A 204, 34 (1995).CrossRefGoogle Scholar
30Meyer, R., Laurent, J., Prakash, >Lewis S., and Entel, P.: Vibrational properties of nanoscale materials: From nanoparticles to nanocrys-talline materials. Phys. Rev. B: Condens. Matter 68, 104303 (2003).CrossRefGoogle Scholar
31Tsai, M.Y., Chou, M.H., and Kao, C.R.: Interfacial reaction and the dominant diffusing species in Mg-Ni system. J. Alloys Compd. (2008), doi: 10.1016/j.jallcom.2008.03.124.Google Scholar