Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T12:08:39.023Z Has data issue: false hasContentIssue false

Synthesis and texturization processes of (super)-hydrophobic fluorinated surfaces by atmospheric plasma

Published online by Cambridge University Press:  02 October 2015

J. Hubert
Affiliation:
Faculté des Sciences, Service de Chimie Analytique et de Chimie des Interfaces, Université Libre de Bruxelles, CP-255, Bld du Triomphe, B-1050 Bruxelles, Belgium
J. Mertens
Affiliation:
Faculté des Sciences, Service de Chimie Analytique et de Chimie des Interfaces, Université Libre de Bruxelles, CP-255, Bld du Triomphe, B-1050 Bruxelles, Belgium
T. Dufour
Affiliation:
Faculté des Sciences, Service de Chimie Analytique et de Chimie des Interfaces, Université Libre de Bruxelles, CP-255, Bld du Triomphe, B-1050 Bruxelles, Belgium
N. Vandencasteele
Affiliation:
Faculté des Sciences, Service de Chimie Analytique et de Chimie des Interfaces, Université Libre de Bruxelles, CP-255, Bld du Triomphe, B-1050 Bruxelles, Belgium
F. Reniers*
Affiliation:
Faculté des Sciences, Service de Chimie Analytique et de Chimie des Interfaces, Université Libre de Bruxelles, CP-255, Bld du Triomphe, B-1050 Bruxelles, Belgium
P. Viville
Affiliation:
Service de Chimie des Matériaux Nouveaux, Université de Mons-UMONS/Materia Nova, 20 Place du Parc, 7000 Mons, Belgium
R. Lazzaroni
Affiliation:
Service de Chimie des Matériaux Nouveaux, Université de Mons-UMONS/Materia Nova, 20 Place du Parc, 7000 Mons, Belgium
M. Raes
Affiliation:
Department of Metallurgy, Electrochemistry and Materials Science (SURF), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussel, Belgium
H. Terryn
Affiliation:
Department of Metallurgy, Electrochemistry and Materials Science (SURF), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussel, Belgium
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The synthesis and texturization processes of fluorinated surfaces by means of atmospheric plasma are investigated and presented through an integrated study of both the plasma phase and the resulting material surface. Three methods enhancing the surface hydrophobicity up to the production of super-hydrophobic surfaces are evaluated: (i) the modification of a polytetrafluoroethylene (PTFE) surface, (ii) the plasma deposition of fluorinated coatings and (iii) the incorporation of nanoparticles into those fluorinated films. In all the approaches, the nature of the plasma gas appears to be a crucial parameter for the desired property. Although a higher etching of the PTFE surface can be obtained with a pure helium plasma, the texturization can only be created if O2 is added to the plasma, which simultaneously decreases the total etching. The deposition of CxFy films by a dielectric barrier discharge leads to hydrophobic coatings with water contact angles (WCAs) of 115°, but only the filamentary argon discharge induces higher WCAs. Finally, nanoparticles were deposited under the fluorinated layer to increase the surface roughness and therefore produce super-hydrophobic hybrid coatings characterized by the nonadherence of the water droplet at the surface.

Type
Invited Feature Papers
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper has been selected as an Invited Feature Paper.

Contributing Editor: Akira Nakajima

References

REFERENCES

Bhushan, B. and Jung, Y.C.: Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 56, 1 (2011).CrossRefGoogle Scholar
Decker, E.L. and Garoff, S.: Contact line structure and dynamics on surfaces with contact angle hysteresis. Langmuir 13, 6321 (1997).CrossRefGoogle Scholar
Öner, D. and McCarthy, T.J.: Ultrahydrophobic surfaces: Effects of topography length scales on wettability. Langmuir 16, 7777 (2000).CrossRefGoogle Scholar
Zhai, L., Cebeci, F.C., Cohen, R.E., and Rubner, M.F.: Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Lett. 4, 1349 (2004).CrossRefGoogle Scholar
Schondelmaier, D., Cramm, S., Klingeler, R., Morenzin, J., and Eberhardt, W.: Orientation and self-assembly of hydrophobic fluoroalkylsilanes. Langmuir 18, 6242 (2002).CrossRefGoogle Scholar
Brinker, C.J. and Scherer, G.W.: Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, Inc., San Diego, USA, 1990).Google Scholar
Ebnesajjad, S.: Introduction to Fluoropolymers: Materials, Technology, and Applications (Elsevier Inc., Oxford, England, 2013).Google Scholar
Morra, M., Occhiello, E., and Garbassi, F.: Contact angle hysteresis in oxygen plasma treated poly(tetrafluoroethylene). Langmuir 5, 872 (1989).CrossRefGoogle Scholar
Ryan, M.E. and Badyal, J.P.S.: Surface texturing of PTFE film using nonequilibrium plasmas. Macromolecules 28, 1377 (1995).CrossRefGoogle Scholar
Vandencasteele, N., Broze, B., Collette, S., De Vos, C., Viville, P., Lazzaroni, R., and Reniers, F.: Evidence of the synergetic role of charged species and atomic oxygen in the molecular etching of PTFE surfaces for hydrophobic surface synthesis. Langmuir 26, 16503 (2010).CrossRefGoogle ScholarPubMed
Badey, J.P., Espuche, E., Sage, D., Chabert, B., Jugnet, Y., Batier, C., and Duc, T.M.: A comparative study of the effects of ammonia and hydrogen plasma downstream treatment on the surface modification of polytetrafluoroethylene. Polymer 37, 1377 (1996).CrossRefGoogle Scholar
Pringle, S.D., Joss, V.S., and Hones, C.: Ammonia plasma treatment of PTFE under known plasma conditions. Surf. Interface Anal. 24, 821 (1996).3.0.CO;2-B>CrossRefGoogle Scholar
Liu, C.Z., Wu, J.Q., Ren, L.Q., Tong, J., Li, J.Q., Cui, N., Brown, N.M.D., and Meenan, B.J.: Comparative study on the effect of RF and DBD plasma treatment on PTFE surface modification. Mater. Chem. Phys. 85, 340 (2004).CrossRefGoogle Scholar
Wilson, D.J., Williams, R.L., and Pond, R.C.: Plasma modification of PTFE surfaces. Part I: Surfaces immediately following plasma treatment. Surf. Interface Anal. 31, 385 (2001).CrossRefGoogle Scholar
Sarani, A., De Geyter, N., Nikiforov, A.Y., Morent, R., Leys, C., Hubert, J., and Reniers, F.: Surface modification of PTFE using an atmospheric pressure plasma jet in argon and argon + CO2 . Surf. Coat. Technol. 206, 2226 (2012).CrossRefGoogle Scholar
Kolska, Z., Reznickova, A., Hnatowicz, V., and Svorcik, V.: PTFE surface modification by Ar plasma and its characterization. Vacuum 86, 643 (2012).CrossRefGoogle Scholar
Youxian, D., Griessert, H.J., Mau, A.W-H., Schmidt, R., and Liesegang, J.: Surface modification of poly(tetrafluoroethylene) by gas plasma treatment. Polymer 32, 1126 (1991).CrossRefGoogle Scholar
Tanaka, K. and Kogoma, M.: Investigation of a new reactant for fluorinated polymer surface treatments with atmospheric pressure glow plasma to improve the adhesive strength. Int. J. Adhes. Adhes. 23, 515 (2003).CrossRefGoogle Scholar
Zettsu, N., Itoh, H., and Yamamura, K.: Plasma-chemical surface functionalization of flexible substrates at atmospheric pressure. Thin Solid Films 516, 6683 (2008).CrossRefGoogle Scholar
Stelmashuk, V., Biederman, H., Slavinska, D., Zemek, J., and Trchova, M.: Plasma polymer films rf sputtered from PTFE under various argon pressures. Vacuum 77, 131 (2005).CrossRefGoogle Scholar
Golub, M.A., Wydeven, T., and Johnson, A.L.: Similarity of plasma-polymerized tetrafluoroethylene and fluoropolymer films deposited by rf sputtering of poly(tetrafluoroethylene). Langmuir 14, 2217 (1998).CrossRefGoogle Scholar
Mathias, E. and Miller, G.H.: The decompostion of polytetrafluoroethylene in a glow discharge. J. Phys. Chem. 71, 2671 (1967).CrossRefGoogle Scholar
Ryan, M.E., Fonseca, J.L., Tasker, S., and Badyal, J.P.S.: Plasma polymerization of sputtered poly(tetrafluoroethylene). J. Phys. Chem. 99, 7060 (1995).CrossRefGoogle Scholar
Wilson, D.J., Eccles, A.J., Steele, T.A., Williams, R.L., and Pond, R.C.: Surface chemistry and wettability of plasma-treated PTFE. Surf. Interface Anal. 30, 36 (2000).3.0.CO;2-Z>CrossRefGoogle Scholar
Salapare, H.S., Guittard, F., Noblin, X., Tagin de Givenchy, E., Celestini, F., and Ramos, H.J.: Stability of the hydrophilic and superhydrophobic properties of oxygen plasma-treated poly(tetrafluoroethylene) surfaces. J. Colloid Interface Sci. 396, 287 (2013).CrossRefGoogle ScholarPubMed
Barshilia, H.C. and Gupta, N.: Superhydrophobic polytetrafluoroethylene surfaces with leaf-like micro-protrusions through Ar + O2 plasma etching process. Vacuum 99, 42 (2014).CrossRefGoogle Scholar
Carbone, E.A.D., Boucher, N., Sferrazza, M., and Reniers, F.: How to increase the hydrophobicity of PTFE surfaces using an r.f. atmospheric-pressure plasma torch. Surf. Interface Anal. 42, 1014 (2010).CrossRefGoogle Scholar
Trigwell, S., Boucher, D., and Calle, C.I.: Electrostatic properties of PE and PTFE subjected to atmospheric pressure plasma treatment; correlation of experimental results with atomistic modelling. J. Electrost. 65, 401 (2007).CrossRefGoogle Scholar
Mackie, N.M., Castner, D.G., and Fisher, E.R.: Characterization of pulsed-plasma-polymerized aromatic films. Langmuir 14, 1227 (1998).CrossRefGoogle Scholar
d'Agostino, R., Flamm, D.L., and Auciello, O.: Plasma Deposition, Treatment and Etching of Polymers (Academic Press, San Diego, USA, 1990).Google Scholar
Henry, F., Renaux, F., Coppée, S., Lazzaroni, R., Vandencasteele, N., Reniers, F., and Snyders, R.: Synthesis of superhydrophobic PTFE-like thin films by self-nanostructuration in a hybrid plasma process. Surf. Sci. 606, 1825 (2012).CrossRefGoogle Scholar
Wang, Y-R., Ma, W-C., Lin, J-H., Lin, H-H., Tsai, C-Y., and Huang, C.: Deposition of fluorocarbon film with 1,1,1,2-tetrafluoroethane pulsed plasma polymerization. Thin Solid Films 570, 445 (2014).CrossRefGoogle Scholar
Favia, P., Cicala, G., Milella, A., Palumbo, F., Rossini, P., and d'Agostino, R.: Deposition of super-hydrophobic fluorocarbon coatings in modulated RF glow discharges. Surf. Coat. Technol. 169170, 609 (2003).CrossRefGoogle Scholar
Mackie, N.M., Dalleska, N.F., Castner, D.G., and Fisher, E.R.: Comparison of pulsed and continuous-wave deposition of thin films from saturated fluorocarbon/H2 inductively coupled rf plasmas. Chem. Mater. 9, 349 (1997).CrossRefGoogle Scholar
d'Agostino, R., Favia, P., Kawai, Y., Ikegami, H., Sato, N., and Arefi-Khonsari, F.: Advanced Plasma Technology (Wiley-VCH, Germany, 2008).Google Scholar
Hopkins, J. and Babyal, J.P.S.: Nonequilibrium glow discharge fluorination of polymer surfaces. J. Phys. Chem. 99, 4261 (1995).CrossRefGoogle Scholar
Strobel, M., Corn, S., Lyons, C.S., and Korba, G.A.: Plasma fluorination of polyolefins. J. Polym. Sci., Part A: Polym. Chem. 25, 1295 (1987).CrossRefGoogle Scholar
Fanelli, F., Fracassi, F., and d'Agostino, R.: Atmospheric pressure PECVD of fluorocarbon coatings from glow dielectric barrier discharges. Plasma Processes Polym. 4, S430 (2007).CrossRefGoogle Scholar
Fanelli, F., Fracassi, F., and d'Agostino, R.: Deposition and etching of fluorocarbon thin films in atmospheric pressure DBDs fed with Ar–CF4–H2 and Ar–CF4–O2 mixtures. Surf. Coat. Technol. 204, 1779 (2010).CrossRefGoogle Scholar
Vinogradov, I.P. and Lunk, A.: Spectroscopic diagnostics of DBD in Ar/fluorocarbon mixtures—Correlation between plasma parameters and properties of deposited polymer films. Plasma Processes Polym. 2, 201 (2005).CrossRefGoogle Scholar
Vinogradov, I.P., Dinkelmann, A., and Lunk, A.: Deposition of fluorocarbon polymer films in a dielectric barrier discharge (DBD). Surf. Coat. Technol. 174175, 509 (2003).CrossRefGoogle Scholar
Kim, S.H., Kim, J-H., Kang, B-K., and Uhm, H.S.: Superhydrophobic CFx coating via in-line atmospheric RF plasma of He−CF4−H2 . Langmuir 21, 12213 (2005).CrossRefGoogle ScholarPubMed
Liu, D., Yin, Y., Li, D., Niu, J., and Fen, Z.: Surface modification of materials by dielectric barrier discharge deposition of fluorocarbon films. Thin Solid Films 517, 3656 (2009).CrossRefGoogle Scholar
Nagai, M., Takai, O., and Hori, M.: Atmospheric pressure fluorocarbon-particle plasma chemical vapor deposition for hydrophobic film coating. Jpn. J. Appl. Phys. 45, L460 (2006).CrossRefGoogle Scholar
Hsieh, C-T., Yang, S-Y., and Lin, J-Y.: Electrochemical deposition and superhydrophobic behavior of ZnO nanorod arrays. Thin Solid Films 518, 4884 (2010).CrossRefGoogle Scholar
Wang, J., Li, A., Chen, H., and Chen, D.: Synthesis of biomimetic superhydrophobic surface through electrochemical deposition on porous alumina. J. Bionic Eng. 8, 122 (2011).CrossRefGoogle Scholar
Balu, B., Kim, J.S., Breedveld, V., and Hess, D.W.: Tunability of the adhesion of water drops on a superhydrophobic paper surface via selective plasma etching. J. Adhes. Sci. Technol. 23, 361 (2009).CrossRefGoogle Scholar
Shearer, J.C., Fisher, M.J., Hoogland, D., and Fisher, E.R.: Composite SiO2/TiO2 and amine polymer/TiO2 nanoparticles produced using plasma-enhanced chemical vapor deposition. Appl. Surf. Sci. 256, 2081 (2010).CrossRefGoogle Scholar
Lakshmi, R.V., Bharathidasan, T., Pera, P., and Basu, B.J.: Fabrication of superhydrophobic and oleophobic sol–gel nanocomposite coating. Surf. Coat. Technol. 206, 3888 (2012).CrossRefGoogle Scholar
Valipour Motlagh, N., Sargolzaei, J., and Shahtahmassebi, N.: Super-liquid-repellent coating on the carbon steel surface. Surf. Coat. Technol. 235, 241 (2013).CrossRefGoogle Scholar
Charlot, A., Deschanels, X., and Toquer, G.: Submicron coating of SiO2 nanoparticles from electrophoretic deposition. Thin Solid Films 553, 148 (2014).CrossRefGoogle Scholar
Ogihara, H., Xie, J., Okagaki, J., and Saji, T.: Simple method for preparing superhydrophobic paper: Spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency and transparency. Langmuir 28, 4605 (2012).CrossRefGoogle ScholarPubMed
Zhang, Y., Ge, D., and Yang, S.: Spray-coating of superhydrophobic aluminum alloys with enhanced mechanical robustness. J. Colloid Interface Sci. 423, 101 (2014).CrossRefGoogle ScholarPubMed
Fabbri, P., Messori, M., Montecchi, M., Pilati, F., Taurino, R., Tonelli, C., and Toselli, M.: Surface properties of fluorinated hybrid coatings. J. Appl. Polym. Sci. 102, 1483 (2006).CrossRefGoogle Scholar
Kylian, O., Petr, M., Serov, A., Solar, P., Polonskyi, O., Hanus, J., Chouhourov, A., and Biederman, H.: Hydrophobic and super-hydrophobic coatings based on nanoparticles overcoated by fluorocarbon plasma polymer. Vacuum 100, 57 (2014).CrossRefGoogle Scholar
Basu, B.J. and Kumar, V.D.: Fabrication of superhydrophobic nanocomposite coatings using polytetrafluoroethylene and silica nanoparticles. ISRN Nanotechnol. 2011, 803910 (2011).CrossRefGoogle Scholar
Dufour, T., Hubert, J., Viville, P., Duluard, C.Y., Desbief, S., Lazzaroni, R., and Reniers, F.: PTFE surface etching in the post-discharge of a scanning RF plasma torch: Evidence of ejected fluorinated species. Plasma Processes Polym. 9, 820 (2012).CrossRefGoogle Scholar
Hubert, J., Poleunis, C., Delcorte, A., Laha, P., Bossert, J., Lambeets, S., Ozkan, A., Bertrand, P., Terryn, H., and Reniers, F.: Plasma polymerization of C4Cl6 and C2H2Cl4 at atmospheric pressure. Polymer 54, 4085 (2013).CrossRefGoogle Scholar
Hubert, J., Vandencasteele, N., Mertens, J., Viville, P., Dufour, T., Barroo, C., Visart de Bocarmé, T., Lazzaroni, R., and Reniers, F.: Chemical and physical effects of the carrier gas on the atmospheric pressure PECVD of fluorinated precursors. Plasma Processes Polym. (2015). doi: 10.1002/ppap.201500025.CrossRefGoogle Scholar
Hubert, J., Dufour, T., Vandencasteele, N., Desbief, S., Viville, P., Lazzaroni, R., and Reniers, F.: Etching processes of polytetrafluoroethylene surfaces exposed to He and He–O2 atmospheric post-discharges. Langmuir 28, 9466 (2012).CrossRefGoogle Scholar
Lagow, R.J.: Fluorinated functionalized polymers. U.S. Patent No. 4076916, 1978.Google Scholar
Dufour, T., Hubert, J., Vandencasteele, N., and Reniers, F.: Chemical mechanisms inducing a dc current measured in the flowing post-discharge of an RF He–O2 plasma torch. Plasma Sources Sci. Technol. 21, 045013 (2012).CrossRefGoogle Scholar
Gavare, Z., Gott, D., Pipa, A.V., Ropcke, J., and Skudra, A.: Determination of the number densities of argon metastables in argon-hydrogen plasma by absorption and self-absorption methods. Plasma Sources Sci. Technol. 15, 391 (2006).CrossRefGoogle Scholar
Li, Y., Chen, Z., and Pu, Y-K.: Density measurement of helium metastable states by absorption spectroscopy in an inductively coupled plasma. Plasma Processes Polym. 2, 581 (2005).CrossRefGoogle Scholar
Sun, T.L., Feng, L., Gao, X.F., and Jiang, L.: Bioinspired surfaces with special wettability. Acc. Chem. Res. 38, 644 (2005).CrossRefGoogle ScholarPubMed
Chen, Y. and Rodak, D.E.: Is the lotus leaf superhydrophobic? Appl. Phys. Lett. 86, 144101 (2005).CrossRefGoogle Scholar
Miwa, M., Nakajima, A., Fujishima, A., Hashimoto, K., and Watanabe, T.: Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir 16, 5754 (2000).CrossRefGoogle Scholar
Vandencasteele, N., Nisol, B., Viville, P., Lazzaroni, R., Castner, D.G., and Reniers, F.: Plasma-modified PTFE for biological applications: Correlation between protein-resistant properties and surface characteristics. Plasma Processes Polym. 7, 661 (2008).CrossRefGoogle Scholar
Léveillé, V. and Coulombe, S.: Atomic oxygen production and exploration of reaction mechanisms in a He-O2 atmospheric pressure glow discharge torch. Plasma Processes Polym. 3, 587 (2006).CrossRefGoogle Scholar
Gonzales, E. II, Barankin, M.D., Guschl, P.C., and Hicks, R.F.: Surface activation of poly(methyl methacrylate) via remote atmospheric pressure plasma. Plasma Processes Polym. 7, 482 (2010).Google Scholar
Massines, F., Gouda, G., Gherardi, N., Duran, M., and Croquesel, E.: The role of dielectric barrier discharge atmosphere and physics on polypropylene surface treatment. Plasmas Polym. 6, 35 (2001).CrossRefGoogle Scholar
Nersisyan, G. and Graham, W.G.: Characterization of a dielectric barrier discharge operating in an open reactor with flowing helium. Plasma Sources Sci. Technol. 13, 582 (2004).CrossRefGoogle Scholar
Youngblood, J.P. and McCarthy, T.J.: Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma. Macromolecules 32, 6800 (1999).CrossRefGoogle Scholar
Horie, M.: Plasma‐structure dependence of the growth mechanism of plasma‐polymerized fluorocarbon films with residual radicals. J. Vac. Sci. Technol., A 13, 2490 (1995).CrossRefGoogle Scholar
Strobel, M., Lyons, C.S., and Mittal, K.L.: Plasma Surface Modification of Polymers: Relevance to Adhesion (VSP, Utrecht, The Netherlands, 1994).Google Scholar
Massines, F., Ségur, P., Gherardi, N., Khamphan, C., and Ricard, A.: Physics and chemistry in a glow dielectric barrier discharge at atmospheric pressure: Diagnostics and modelling. Surf. Coat. Technol. 174175, 8 (2003).CrossRefGoogle Scholar
Ricard, A.: Plasmas réactifs (Société française du vide, Paris, France, 1995).Google Scholar
Kobayashi, H., Bell, A.T., and Shen, M.: Plasma polymerization of saturated and unsaturated hydrocarbons. Macromolecules 7, 277 (1974).CrossRefGoogle Scholar
Yasuda, H. and Hsu, T.: Some aspects of plasma polymerization investigated by pulsed R.F. discharge. J. Polym. Sci., Polym. Chem. Ed. 15, 81 (1977).CrossRefGoogle Scholar
Batan, A., Nisol, B., Kakaroglou, A., De Graeve, I., Van Assche, G., Van Mele, B., Terryn, H., and Reniers, F.: The impact of double bonds in the APPECVD of acrylate-like precursors. Plasma Processes Polym. 10, 857 (2013).CrossRefGoogle Scholar
Fridman, A.: Plasma Chemistry (Cambridge University Press, New-York, USA, 2008).CrossRefGoogle Scholar
Eliasson, B. and Kogelschatz, U.: Modeling and applications of silent discharge plasmas. IEEE Trans. Plasma Sci. 19, 309 (1991).CrossRefGoogle Scholar
Kunhardt, E.E.: Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas. IEEE Trans. Plasma Sci. 28, 189 (2000).CrossRefGoogle Scholar
Simsek, E., Acatay, K., and Menceloglu, Y.Z.: Dual scale roughness driven perfectly hydrophobic surfaces prepared by electrospraying a polymer in good solvent–poor solvent systems. Langmuir 28, 14192 (2012).CrossRefGoogle ScholarPubMed
Wu, J., Xia, J., Lei, W., and Wang, B-P.: Fabrication of superhydrophobic surfaces with double-scale roughness. Mater. Lett. 64, 1251 (2010).CrossRefGoogle Scholar
Barthlott, W. and Neinhuis, C.: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1 (1997).CrossRefGoogle Scholar
Neinhuis, C. and Barthlott, W.: Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 79, 667 (1997).CrossRefGoogle Scholar
Ming, W., Wu, D., van Benthem, R., and de With, G.: Superhydrophobic films from raspberry-like particles. Nano Lett. 5, 2298 (2005).CrossRefGoogle ScholarPubMed
Fanelli, F., Mastrangelo, A.M., and Fracassi, F.: Aerosol-assisted atmospheric cold plasma deposition and characterization of superhydrophobic organic–inorganic nanocomposite thin films. Langmuir 30, 857 (2014).CrossRefGoogle ScholarPubMed