Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T11:44:57.507Z Has data issue: false hasContentIssue false

Synthesis and Microstructure of Antimony Oxide Nanorods

Published online by Cambridge University Press:  31 January 2011

Zaoli Zhang
Affiliation:
Beijing Laboratory of Electron Microscopy, Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 2724, Beijing, 100080, People's Republic of China
Get access

Abstract

Antimony oxide nanorods were synthesized by the microemulsion method. The nanorods had diameter in the range of 507–175 nm and a length of up to several micrometers. The microstructure of the nanorods was examined by analytical transmission electron microscopy and high-resolution transmission electron microscopy (HRTEM). Large-angle tilt diffraction experiments on the normal nanorods (about 90 nm in diameter) showed that they have an orthorhombic structure. Combining the results of internal standards using the silicon single crystal, it could be concluded that the synthesized nanorod is Sb2O4. The common growth direction of the nanorods was along the long axis. HRTEM images showed it had a periodic layer structure, and some defects and a layer of amorphous on the nanorods surface were found. The formation mechanism of Sb2O4 nanorods is briefly discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Steigerwald, M.L. and Brus, L.E., Acc. Chem. Res. 23, 183 (1990); Y. Wang and N. Harron, J. Phys. Chem. 95, 525 (1991).CrossRefGoogle Scholar
Henglein, A., Chem. Rev. 89, 1861 (1989).CrossRefGoogle Scholar
Chestnoy, N., Harris, T.D., Hull, R., and Brus, L.E., J. Phys. Chem. 90, 3393 (1986).CrossRefGoogle Scholar
Hirai, H., Wakabayashi, H., and Komiyama, M., Chem. Lett. 7, 1047 (1983).CrossRefGoogle Scholar
Brugger, P-A., Cuendet, P., and Gratzel, M., J. Am. Chem. Soc. 103, 2923 (1981).CrossRefGoogle Scholar
Thomas, J.M., Pure Appl. Chem. 60, 1517 (1988).CrossRefGoogle Scholar
Trentler, T.J., Hickman, K.M., Geol, S.C., Viano, A.M., Gibbons, P.C., and Buhro, W.E., Science 280, 1791 (1999).Google Scholar
Morales, A.M. and Lieber, C.M., Science 279, 208 (1998).CrossRefGoogle Scholar
Dai, H., Wong, E.W., Lu, Y.Z., Fan, S.S., and Lieber, C.M., Nature 375, 769 (1999).CrossRefGoogle Scholar
Han, W.Q., Fan, S.S., Li, Q.Q., and Hu, Y.D., Science 277, 1287 (1997).CrossRefGoogle Scholar
Yang, J., Meldrum, F.C., and Fendler, J.H., J. Phys. Chem. 99, 5500 (1998).CrossRefGoogle Scholar
Li, Y.D., Liao, H.W., Ding, Y., Qian, Y.T., Yang, L., and Zhou, G.E., Chem. Mater. 10, 2301 (1998).CrossRefGoogle Scholar
Dzimitrowice, D.J., Goodenough, J.B., and Wiseman, P.J., Mater. Res. Bull. 17, 971 (1982).CrossRefGoogle Scholar
Ozawa, K., Sakka, Y., and Amamo, A., J. Mater. Res. 13, 830 (1998).CrossRefGoogle Scholar
Stewart, D.J., Knop, O., Ayasse, C., and Woodhams, F.W.D., Canadian Journal of Chemistry, 50, 690 (1972).CrossRefGoogle Scholar
Zhang, Z.L. and Guo, L., J. Mater. Res. 16, 803 (2001).CrossRefGoogle Scholar
Powder Diffraction File No. 11-694, International Centre for Diffraction Data, Newton Square, PA.Google Scholar
Guo, L., Wu, Z.H., Liu, T., Wang, W.D., and Zhu, H.S., Chem. Phy. Lett. 318, 49 (2000).CrossRefGoogle Scholar
Ajayan, P.M., Stephan, O., Ph. Redlich, and Colliex, C., Nature 375, 564 (1995).CrossRefGoogle Scholar
Satishkumar, B.C., Govindaraj, A., Manashi Nath, and Rao, C.N.R., J. Mater. Chem. 10, 2115 (2000).CrossRefGoogle Scholar
Schwuger, M. Johann, Stickdom, K., and Schomacker, R., Chem. Rev. 95, 7849 (1995).CrossRefGoogle Scholar
Suare, M.J., J. Phys. Chem., 94, 9808 (1993).CrossRefGoogle Scholar
Hopwood, J.D., Mann, S., Chem. Mater. 9, 1819 (1997).CrossRefGoogle Scholar
Cheng, G.X., Shen, F., Yang, L.F., Ma, L.R., and Sun, P.C., Mater. Chem. Phys. 56, 97 (1998).CrossRefGoogle Scholar
Powder Diffraction File No. 42-1466, International Centre for Diffraction Data, Newton Square, PA.Google Scholar
Powder Diffraction File No. 11-689, International Centre for Diffraction Data, Newton Square, PA.Google Scholar
Powder Diffraction File No. 17-620, International Centre for Diffraction Data, Newton Square, PA.Google Scholar
Cody, C.A., Dicarlo, L., and Darlinton, R.K., Inorg. Chem. 18, 1572 (1979).CrossRefGoogle Scholar
Mestl, G., Ruiz, P., Delmon, B., and Knözinger, H., J. Phys. Chem. 98, 11276 (1994).CrossRefGoogle Scholar
Wang, Z.L., Petroski, J., Green, T., and El-Sayed, M.A., Proceeding, “Microscopy and Microanalysis 1999” Portland, Oregon August 1–5, edited by Bailey, G.W., Jerome, W.G., Mckernan, S., Mansfield, J.F., and Price, R.L., Springer, 1999.Google Scholar
Zhang, M., Efremov, M. Yu., Schiettekatte, F., Olson, E.A., Kwan, A.T., Kwan, S.L., Lai, S.L., Wisleder, T., Greene, J.E., and Allen, L.H., Phys. Rev. B 62, 10548 (2001).CrossRefGoogle Scholar