Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T16:13:52.908Z Has data issue: false hasContentIssue false

Synthesis and microstructural characterization of inorganic fullerene-like MoS2 and graphite-MoS2 hybrid nanoparticles

Published online by Cambridge University Press:  01 April 2006

J.J. Hu*
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory (AFRL / MLBT), Wright-Patterson Air Force Base, Dayton, Ohio 45433-7750
J.H. Sanders
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory (AFRL / MLBT), Wright-Patterson Air Force Base, Dayton, Ohio 45433-7750
J.S. Zabinski
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory (AFRL / MLBT), Wright-Patterson Air Force Base, Dayton, Ohio 45433-7750
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The structures of inorganic fullerene-like (IF) MoS2 nanoparticles produced by arc discharge in water are reported in this paper. To adjust the chemistry and structure of IF nanoparticles, 2H–MoS2, graphite and composite 2H–MoS2/graphite rods were used as electrodes in the arc synthesis. In comparison to using MoS2 as both anode and cathode, mixed electrodes (graphite and MoS2) significantly increased the discharge current. Various IF-MoS2 nanoparticles were successfully produced by the water-based arc method, and their microstructures were studied using a transmission electron microscope equipped with an x-ray energy dispersive spectrometer. The IF–MoS2 nanoparticles commonly had a solid core wrapped with a few MoS2 layers and exhibit some differences in size and geometry. The IF-MoS2 nanoparticles were typically 5–30 nm in diameter as observed by transmission electron microscopy. Tiny IF-MoS2 nanoparticles (<10 nm) along with fragments of lamellar MoS2 were produced from arc discharge in water using both graphite and MoS2 electrodes. Carbon nano-onions and hybrid nanoparticles consisting of carbon and MoS2 were synthesized by using mixed electrodes of graphite and 2H–MoS2. The hybrid nanoparticles were MoS2 cores covered by a graphite shell. Our results show that the water-based arc method provides a simple tool for producing a variety of nanoparticles including some familiar and some new hybrid structures.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ishigami, M., Cumings, J., Zettl, A., Chen, S.: A simple method for the continuous production of carbon nanotubes. Chem. Phys. Lett. 319, 457 (2000).CrossRefGoogle Scholar
2.Hsin, Y.L., Hwang, K.C., Chen, F.R., Kai, J.J.: Production and in-situ metal filling of carbon nanotubes in water. Adv. Mater. 13, 830 (2001).3.0.CO;2-4>CrossRefGoogle Scholar
3.Zhu, H.W., Li, X.S., Jiang, B., Xu, C.L., Zhu, Y.F., Wu, D.H., Chen, X.H.: Formation of carbon nanotubes in water by the electric-arc technique. Chem. Phys. Lett. 366, 664 (2002).CrossRefGoogle Scholar
4.Sano, N., Wang, H., Chhowalla, M., Alexandrou, I., Amaratunga, G.A.J.: Nanotechnology—Synthesis of carbon ‘onions’ in water. Nature 414, 506 (2001).CrossRefGoogle ScholarPubMed
5.Wang, H., Chhowalla, M., Sano, N., Jia, S., Amaratunga, G.A.J.: Large-scale synthesis of single-walled carbon nanohorns by submerged arc. Nanotechnology 15, 546 (2004).CrossRefGoogle Scholar
6.Sano, N.: Low-cost synthesis of single-walled carbon nanohorns using the arc in water method with gas injection. J. Phys. D Appl. Phys. 37, L17 (2004).CrossRefGoogle Scholar
7.Sano, N., Naito, M., Chhowalla, M., Kikuchi, T., Matsuda, S., Iimura, K., Wang, H., Kanki, T., Amaratunga, G.A.J.: Pressure effects on nanotubes formation using the submerged arc in water method. Chem. Phys. Lett. 378, 29 (2003).CrossRefGoogle Scholar
8.Sano, N., Kikuchi, T., Wang, H., Chhowalla, M., Amaratunga, G.A.J.: Carbon nanohorns hybridized with a metal-included nanocapsule. Carbon 42, 95 (2004).CrossRefGoogle Scholar
9.Ang, K.H., Alexandrou, I., Mathur, N.D., Amaratunga, G.A.J., Haq, S.: The effect of carbon encapsulation on the magnetic properties of Ni nanoparticles produced by arc discharge in de-ionized water. Nanotechnology 15, 520 (2004).CrossRefGoogle Scholar
10.Bera, D., Kuiry, S.C., McCutchen, M., Kruize, A., Heinrich, H., Meyyappan, M., Seal, S.: In-situ synthesis of palladium nanoparticles-filled carbon nanotubes using arc-discharge in solution. Chem. Phys. Lett. 386, 364 (2004).CrossRefGoogle Scholar
11.Montoro, L.A., Lofrano, R.C.Z., Rosolen, J.M.: Synthesis of single-walled and multi-walled carbon nanotubes by arc-water method. Carbon 43, 195 (2005).CrossRefGoogle Scholar
12.Sano, N.: Formation of multi-shelled carbon nanoparticles by arc discharge in liquid benzene. Mater. Chem. Phys. 88, 235 (2004).CrossRefGoogle Scholar
13.Tenne, R., Margulis, L., Genut, M., Hodes, G.: Polyhedral and cylindrical structures of tungsten disulfide. Nature 360, 444 (1992).CrossRefGoogle Scholar
14.Margulis, L., Salitra, G., Tenne, R., Talianker, M.: Nested fullerene-like structures. Nature 365, 113 (1993).CrossRefGoogle Scholar
15.Feldman, Y., Wasserman, E., Srolovitz, D.J., Tenne, R.: High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222 (1995).CrossRefGoogle ScholarPubMed
16.Parilla, P.A., Dillon, A.C., Jones, K.M., Riker, G., Schulz, D.L., Ginley, D.S., Heben, M.J.: The first true inorganic fullerenes. Nature 397, 114 (1999).CrossRefGoogle Scholar
17.Sen, R., Govindaraj, A., Suenaga, K., Suzuki, S., Kataura, H., Iijima, S., Achiba, Y.: Encapsulated and hollow closed-cage structures of WS2 and MoS2 prepared by laser ablation at 450–1050 degrees C. Chem. Phys. Lett. 340, 242 (2001).CrossRefGoogle Scholar
18.Chhowalla, M., Amaratunga, G.A.J.: Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 407, 164 (2000).CrossRefGoogle ScholarPubMed
19.Mdleleni, M.M., Hyeon, T., Suslick, K.S.: Sonochemical synthesis of nanostructured molybdenum sulfide. J. Am. Chem. Soc. 120, 6189 (1998).CrossRefGoogle Scholar
20.Chen, J., Li, S.L., Xu, Q., Tanaka, K.: Synthesis of open-ended MoS2 nanotubes and the application as the catalyst of methanation. Chem. Commun. 16, 1722 (2002).CrossRefGoogle Scholar
21.Homyonfer, M., Alperson, B., Rosenberg, Y., Sapir, L., Cohen, S.R., Hodes, G., Tenne, R.: Intercalation of inorganic fullerene-like structures yields photosensitive films and new tips for scanning-probe microscopy. J. Am. Chem. Soc. 119, 2693 (1997).CrossRefGoogle Scholar
22.Rothschild, A., Cohen, S.R., Tenne, R.: WS2 nanotubes as tips in scanning-probe microscopy. Appl. Phys. Lett. 75, 4025 (1999).CrossRefGoogle Scholar
23.Rapoport, L., Bilik, Yu., Feldman, Y., Homyonfer, M., Cohen, S.R., Tenne, R.: Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791 (1997).CrossRefGoogle Scholar
24.Rapoport, L., Lvovsky, M., Lapsker, I., Leshinsky, V., Volovik, Y., Feldman, Y., Zak, A., Tenne, R.: Slow release of fullerene-like WS2 nanoparticles as a superior solid lubrication mechanism in composite matrices. Adv. Eng. Mater. 3, 71 (2001).3.0.CO;2-M>CrossRefGoogle Scholar
25.Hu, J.J., Zabinski, J.S.: Nanotribology and lubrication mechanisms of inorganic fullerene-like MoS2 nanoparticles investigated using lateral force microscopy (LFM). Tribol. Lett . 18, 173 (2005).CrossRefGoogle Scholar
26.Sano, N., Wang, H., Chhowalla, M., Alexandrou, I., Amaratunga, G.A.J., Naito, M., Kanki, T.: Fabrication of inorganic molybdenum disulfide fullerenes by arc in water. Chem. Phys. Lett. 368, 331 (2003).CrossRefGoogle Scholar
27.Hu, J.J., Bultman, J.E., Zabinski, J.S.: Inorganic fullerene-like nanoparticles produced by arc discharge in water with potential lubricating ability. Tribol. Lett . 17, 543 (2004).CrossRefGoogle Scholar
28.Lansdown, A.R.: Molybdenum Disulphide Lubrication, edited by Dowson, D. (Elsevier, Amsterdam, 1999).Google Scholar
29.Clauss, F.J.: Solid Lubricants and Self-Lubricating Solids (Academic Press, New York, 1972).Google Scholar
30.Seraphin, S.: Single-walled tubes and encapsulation of nanocrystals into carbon clusters. J. Electrochem. Soc. 142, 290 (1995).CrossRefGoogle Scholar
31.Elliott, B.R., Host, J.J., Dravid, V.P., Teng, M.H., Hwang, J-H.: A descriptive model linking possible formation mechanisms for graphite-encapsulated nanocrystals to processing parameters. J. Mater. Res. 12, 3328 (1997).CrossRefGoogle Scholar
32.Scott, J.H.J., Majetich, S.A.: Morphology, structure, and growth of nanoparticles produced in a carbon-arc. Phys. Rev. B 52, 12564 (1995).CrossRefGoogle Scholar
33.Dravid, V.P., Host, J.J., Teng, M.H., Elliott, B.R., Hwang, J.H., Johnson, D.L., Mason, T.O., Weertman, J.R.: Controlled-size nanocapsules. Nature 374, 602 (1995).CrossRefGoogle Scholar
34.Tenne, R.: Advances in the synthesis of inorganic nanotubes and fullerene-like nanoparticles. Angew. Chem. Int. Ed. 42, 5124 (2003).CrossRefGoogle ScholarPubMed
35.Si, P.Z., Zhang, M., Zhang, Z.D., Zhao, X.G., Ma, X.L., Geng, D.Y.: Synthesis and structure of multi-layered WS2(CoS), MoS2(Mo) nanocapsules and single-layered WS2(W) nanoparticles. J. Mater. Sci. 38, 4287 (2005).CrossRefGoogle Scholar
36.Sano, N.: Separated syntheses of Gd-hybridized single-wall carbon nanohorns, single-wall nanotubes and multi-wall nanostructures by arc discharge in water with support of gas injection. Carbon . 43, 450 (2005).CrossRefGoogle Scholar