Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T11:07:45.629Z Has data issue: false hasContentIssue false

Synthesis and hydrogen reduction of tungsten–copper composite oxides

Published online by Cambridge University Press:  31 January 2011

L. P. Dorfman
Affiliation:
Osram sylvania, Hawes Street, Towanda, Pennsylvania 18848
D. L. Houck
Affiliation:
Osram sylvania, Hawes Street, Towanda, Pennsylvania 18848
M. J. Scheithauer
Affiliation:
Osram sylvania, Hawes Street, Towanda, Pennsylvania 18848
T. A. Frisk
Affiliation:
Osram sylvania, Hawes Street, Towanda, Pennsylvania 18848
Get access

Abstract

Cupric tungstate (CuWO4) can be synthesized at high rates of conversion from a variety of solid reactants. However, the fixed copper content in the metal phase of CuWO4 limits its use as an oxide precursor for making W–Cu composite powders. This paper presents test results on synthesis of CuWO4-based composite oxides with a variable content of copper in the metal phase (5–25.7%). Hydrogen reduction converts the oxides to W–Cu composite powders with a unique phase distribution: each individual particle consists of a tungsten phase and a copper phase in which the tungsten phase substantially encapsulates the copper phase. These powders, when pressed and sintered without activators, yield high-density parts with a very fine microstructure and high electrical and thermal conductivity.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Houck, D.L., Kopatz, N.E., Paliwal, M., and Sampath, S., U.S. Patent Nos. 5 439 638 and 5 897 962.Google Scholar
2Jech, D.E. and Sepulveda, J.L., in Advanced Copper-Refractory Metal Matrix Composites for Packaging Applications, Proc. 1997 Int. Symp. Microelectronics, Philadelphia, PA, October 12–16,1997 pp. 9096.Google Scholar
3Skorokhod, V.V., Solonin, Yu.M., Filippov, N.I., and Roshchin, A.N., Russ. J. Powder Metall. No. 9, 9 (1983).Google Scholar
4Sale, F.R., The Application of Thermochemical Data to the Production of Tungsten, Tungsten Carbide and Tungsten-Copper Powders (Special Publication of the British Chemical Society, 34, 1980), pp. 280290.Google Scholar
5Dorfman, L.P., Houck, D.L., Scheithauer, M.J., Dann, J.N., and Fassett, H.O., J. Mater. Res. 16, 1096 (2001).CrossRefGoogle Scholar
6Vasil'eva, I.A., Gerasimova, Ya.I., Simanov, Yu.P., and Resukhina, T.N., Russ. J. Phys. Chem. 31, 825 (1957).Google Scholar
7Skorokhod, V.V., Panichkina, V.V., Solonin, Yu.M., and Uvarova, I.V., Fine Powders of Refractory Metals (in Russian), edited by Skorokhod, V.V.. (“Naukova Dumka”, Kiev, Ukraine, 1979).Google Scholar
8German, R.M., Hens, K.F., and Johnson, J.L., Int. J. Powder Metall. 30, 205 (1994).Google Scholar
9Delmon, B., Kinetics of Heterogeneous Reactions (in Russian) (“Mir”, Moscow, USSR, 1972).Google Scholar
10Angastiniotis, N.C., Kear, B.H., Mccandlish, L.E., Ramanujachary, K.V., and Greenblatt, M.. Nanostruct. Mater. 1, 293 (1992).CrossRefGoogle Scholar
11Kim, T.H., Byeon, J., and Lee, J.S., J. Korean Inst. Metall. Mater. 30, 203 (1992).Google Scholar
12Li, K.C. and Wang, C. Yu, Tungsten (Reinhold, New York-London, 1955).Google Scholar
13Dymchenko, V.A. and Popovich, A.P., Russ. J. Powder Metall. 30 27 (1985).Google Scholar
14Dorfman, L.P., Houck, D.L., Scheithauer, M.J., Paliwal, M., Myers, G.T., and Venskytis, F.J., U.S. Patent Nos. 5 956 560 (21 September 1999) and 6 103 392 (15 August 2000).Google Scholar
15Panichkina, V.V., Sirotiuk, M.M., and Skorokhod, V.V., Russ. J. Powder Metall. No. 6, 27 (1982).Google Scholar
16Yang, Bin and German, R.M., A Study on Controlling the Thermal Conductivity and Sintering Properties of W-Cu Composites, P/M2TEC'93 Conference, 16–19 May 1993, Nashville, TN. in Advances in Powder Metallurgy and Particular Materials, Vol. 2, edited by A. Lawley and A. Swanson (Metal Powder Industries Federation, Princeton, NJ, 1993), p. 203.Google Scholar
17Upadhyaya, A. and German, R.M., Int. J. Powder Metall. 34, 43 (1998).Google Scholar