Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T19:35:59.385Z Has data issue: false hasContentIssue false

Synthesis and electrochemical properties of InP nanocrystals

Published online by Cambridge University Press:  01 March 2006

Sandeep Kumar*
Affiliation:
Freiburg Materials Research Center, Freiburg 79104, Germany
Ralf Thomann
Affiliation:
Freiburg Materials Research Center, Freiburg 79104, Germany
Thomas Nann*
Affiliation:
Freiburg Materials Research Center, Freiburg 79104, Germany
*
a)Address all correspondence to these authors. e-mail: [email protected]
b)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

In this report, we present a new organometallic synthetic method to prepare nearly monodisperse InP nanoparticles using indium trifluoroacetate as the In precursor. Spherical particles of various sizes were prepared by modulating the growth duration. The optical and electrochemical properties were investigated and discussed with reference to band edge positions. This is the first report on the band edge position of quantum confined InP nanoparticles, which is a key parameter for development of electro-optic devices like solar cells and light-emitting diodes based on it.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Huynh, W.U., Dittmer, J.J., Alivisatos, A.P.: Hybrid nanorod-polymer solar cells. Science 295, 2425 (2002).CrossRefGoogle ScholarPubMed
2.Sun, B., Marx, E., Greenham, N.C.: Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers. Nano Lett. 3, 961 (2003).CrossRefGoogle Scholar
3.Kumar, S., Nann, T.: First solar cells based on CdTe nanoparticles/MEH-PPV composites. J. Mater. Res. 19, 1990 (2004).CrossRefGoogle Scholar
4.Ahmadi, T.S., Wang, Z.L., Green, T.C., Henglein, A., Elsayed, A.A.: Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272, 1924 (1996).CrossRefGoogle ScholarPubMed
5.Tessler, N., Medvedev, V., Kazes, M., Kann, S., Banin, U.: Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 195, 1506 (2002).CrossRefGoogle Scholar
6.Wilner, I., Patolsky, F., Wasserman, J.: Photoelectrochemistry with programmed DNA-crosslinked CdS-nanoparticle arrays. Angew. Chem. Int. Ed. Engl. 40, 1861 (2001).3.0.CO;2-V>CrossRefGoogle Scholar
7.Dabbousi, B.O., Bawendi, M.G., Onitsuka, O., Rubner, M.F.: Electroluminescence from CdSe quantum-dot/polymer composites. Appl. Phys. Lett. 66, 1316 (1995).CrossRefGoogle Scholar
8.Lee, J., Sundar, V.C., Heine, J.R., Bawendi, M.G., Jensen, K.F.: Full color emission from II-VI semiconductor quantum dot-polymer composites. Adv. Mater. 12, 1102 (2000).3.0.CO;2-J>CrossRefGoogle Scholar
9.Chan, W.C.W., Nie, S.: Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016 (1998).CrossRefGoogle ScholarPubMed
10.Bruchez, J., Moronne, M., Gin, P., Weiss, S., Alivisatos, A.P.: Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013 (1998).CrossRefGoogle ScholarPubMed
11.Jaiswal, J.K., Mattoussi, H., Mauro, J.M., Simon, S.M.: Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 1, 47 (2003).CrossRefGoogle Scholar
12.Murray, C.B., Norris, D.J., Bawendi, M.J.: Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 15, 8706 (1993).CrossRefGoogle Scholar
13.Nann, T., Riegler, J.: Monodisperse CdSe nanorods at low temperatures. Chem. Eur. J. 8, 4791 (2002).3.0.CO;2-H>CrossRefGoogle ScholarPubMed
14.Kumar, S., Ade, M., Nann, T.: Synthesis and structural metastability of CdTe nanowires. Chem. Eur. J. 19, 1990 (2005).Google Scholar
15.Tang, Z., Kotov, N.A., Giersig, M.: Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297, 237 (2002).CrossRefGoogle ScholarPubMed
16.Landolt–Börnstein, : Physics of II–VI and III–V Compounds, Semimagnetic Semiconductors, Vol. III/17b (Springer-Verlag, Berlin, Germany), p. 992.Google Scholar
17.Chen, C-L.: Elements of Optoelectronic and Fiber Optics (McGrawHill, Irwin, 1996).Google Scholar
18.Micic, O.I., Curtis, C.J., Jones, K.M., Sprague, J.R., Nozik, A.J.: Synthesis and characterization of InP quantum dots. J. Phys. Chem. 98, 4966 (1994).CrossRefGoogle Scholar
19.Guzelian, A.A., Katari, J.E.B., Kadavanich, A.V., Banin, U., Hamad, K., Juban, E., Alivisatos, A.P.: Synthesis of size-selected, surface-passivated InP nanocrystals. J. Phys. Chem. 100, 7212 (1996).CrossRefGoogle Scholar
20.Ahrenkiel, S.P., Micic, O.I., Miedaner, A., Curtis, C.J., Nedeljkovic, J.M., Nozik, A.J.: Synthesis and characterization of colloidal InP quantum rods. Nano Lett. 3, 833 (2003).CrossRefGoogle Scholar
21.Green, M., Brien, P.O.: A novel metalorganic route for the direct and rapid synthesis of monodispersed quantum dots of indium phosphide. Chem. Commun. 22, 2459 (1998).CrossRefGoogle Scholar
22.Battaglia, D., Peng, X.: Formation of high quality InP and InAs nanocrystals in a non-coordinating solvent. Nano Lett. 2, 1027 (2002).CrossRefGoogle Scholar
23.Kucur, E., Riegler, J., Urban, G.A., Nann, T.: Determination of quantum confinement in CdSe nanoctystals by cyclic voltammmetry. J. Chem. Phys. 119, 2333 (2003).CrossRefGoogle Scholar
24.Kucur, E., Riegler, J., Urban, G.A., Nann, T.: Charge transfer mechanism in hybrid bulk heterojunction composites. J. Chem. Phys. 120, 1500 (2004).CrossRefGoogle ScholarPubMed