Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T12:45:42.492Z Has data issue: false hasContentIssue false

Synthesis and characterization of monodisperse metalloporphyrin nanospheres

Published online by Cambridge University Press:  31 January 2011

Chunhui Li*
Affiliation:
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
Yanxia Cao
Affiliation:
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Uniform monodisperse nanospheres of tetra-kis(4-methoxylphenyl) porphynatemanganese (III) chloride [MnIII(TMOPP)Cl] of about 200 nm have been synthesized through a facile surfactant-assisted reprecipitation method at room temperature. Scanning electron microscopy, transmission electron microscope, infrared spectrum, ultraviolet–visible spectrum, and elemental analysis were adopted to characterize the as-prepared metalloporphyrin nanostructures. The influence factors in the reaction to the sizes and morphologies of porphyrin nanoparticles were discussed. The sizes of porphyrin nanoparticles were affected mainly by the porphyrin concentration and only monodisperse nanoshperes with high uniformity in sizes and shapes can self-assemble to form order two-dimensional superstructures.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wang, D.S., Xie, T., Peng, Q., and Li, Y.D.: J. Am. Chem. Soc. 130, 4016 (2008).Google Scholar
2.Sugimoto, T.: J. Am. Chem. Soc. 124, 4016 (2002).Google Scholar
3.Bell, A.T.: Science 299, 1688 (2003).Google Scholar
4.Ge, J.P. and Yin, Y.D.: Adv. Mater. 20, 3485 (2008).Google Scholar
5.Wang, X., Zhuang, J., Peng, Q., and Li, Y.D.: Nature 437, 121 (2005).Google Scholar
6.Lee, M.K., Kim, T.G., Ju, B.K., and Sung, Y.M.: Cryst. Growth Des. 9, 938 (2009).Google Scholar
7.Wang, C.L., Zhang, H., Xu, S.H., Lv, N., Liu, Y., Li, M.J., Sun, H.Z., Zhang, J.H., and Yang, B.: J. Phys. Chem. C 113, 827 (2009).Google Scholar
8.Deng, H., Li, X.L., Peng, Q., Wang, X., Chen, J.P., and Li, Y.D.: Angew. Chem. Int. Ed. 44, 2782 (2005).Google Scholar
9.Chen, H.M., Liu, R.S., Li, H.L., and Zeng, H.C.: Angew. Chem. Int. Ed. 45, 2713 (2006).CrossRefGoogle Scholar
10.Fujimoto, M., Ohno, T., Suzuki, H., Koyama, H., and Tanaka, J.: J. Am. Ceram. Soc. 88, 3264 (2005).CrossRefGoogle Scholar
11.Thauvin, C., Rickling, S., Schultz, P., Celia, H., Meunier, S., and Mioskowski, C.: Nat. Nanotechnol. 3, 743 (2008).Google Scholar
12.Liu, Q.Y., Li, Y., Lin, H.G., Chen, Y.L., Wang, X.Y., Zhang, Y.X., Li, X.Y., and Jiang, J.Z.: J. Phys. Chem. C 111, 7298 (2007).Google Scholar
13.Fu, H.B. and Yao, J.N.: J. Am. Chem. Soc. 123, 1434 (2001).Google Scholar
14.Xiao, D.B. and Lu, X.: J. Am. Chem. Soc. 125, 6740 (2003).CrossRefGoogle Scholar
15.Wang, Z.C., Li, Z.Y., Medorth, C.J., and Shelnutt, J.A.: J. Am. Chem. Soc. 129, 2440 (2007).Google Scholar
16.Nunes, G.S., Mayer, I., Toma, H.E., and Araki, K.: J. Catal. 236, 55 (2005).Google Scholar
17.Akiyama, T., Nakada, M., Terasaki, N., and Yamada, S.: Chem. Commun. (Camb.) 395 (2006).Google Scholar
18.Hori, T., Aratani, N., Takagi, A., Matsumoto, T., Kawai, T., Yoon, M.C., Yoon, Z.S., Cho, S., Kim, D., and Osuka, A.: Chem. Eur. J. 12, 1319 (2006).CrossRefGoogle Scholar
19.Hu, J.S., Guo, Y.G., Liang, H.P., Wan, L.J., and Jiang, L.: J. Am. Chem. Soc. 127, 17090 (2005).CrossRefGoogle Scholar
20.Lee, J.L., Hupp, J.T., and Nguyen, S.T.: J. Am. Chem. Soc. 130, 9632 (2008).CrossRefGoogle Scholar
21.Kojima, T., Harada, R., Nakanishi, T., Kaneko, K., and Fukuzumi, S.: Chem. Mater. 19, 51 (2007).Google Scholar
22.Yoshimoto, S., Honda, Y., and Ito, O.: J. Am. Chem. Soc. 130, 1085 (2008).Google Scholar
23.Gong, X., Milic, T., Xu, C., Batteas, J.D., and Drain, C.M.: J. Am. Chem. Soc. 124, 14290 (2002).CrossRefGoogle Scholar
24.Adler, A.D., Longo, F.R., Finarelli, J.D., Goldmacher, J., Assour, J., and Korsakoff, L.: J. Orf. Chem. 32, 476 (1967).Google Scholar
25.Paulat, F., Praneeth, V.K.K., Nather, C., and Lehnert, N.: Inorg. Chem. 45, 2835 (2006).Google Scholar
26.Martirosyan, G.G., Azizyan, A.S., Kurtikyan, T.S., and Ford, P.C.: Chem. Commun. (Camb.). 1488 (2004).Google Scholar
27.Goncalves, P.J., De Boni, L., Borissevitch, I.E., and Zilio, S.C.: J. Phys. Chem. A 112, 6522 (2008).CrossRefGoogle Scholar
28.Huo, Z.Y., Chen, C., and Li, Y.D.: Chem. Commun. (Camb.) 3522 (2006).CrossRefGoogle Scholar
29.Barick, K.C. and Bahadur, D.J.: Nanosci. Nanotechnol. 7, 1935 (2007).Google Scholar
30.Barick, K.C., Aslam, M., Dravid, V.P., and Bahadur, D.: J. Phys. Chem. C 112, 15163 (2008).CrossRefGoogle Scholar
31.Xu, J., Ge, J.P., and Li, Y.D.: J. Phys. Chem. B 110, 2497 (2006).Google Scholar