Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T22:55:01.134Z Has data issue: false hasContentIssue false

Synthesis and characterization of hexanary Ti–Zr–V–Cr–Ni–Fe high-entropy Laves phase

Published online by Cambridge University Press:  06 February 2019

Shashank Shekhar Mishra
Affiliation:
Hydrogen Energy Centre, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
Semanti Mukhopadhyay
Affiliation:
Department of Materials Science and Engineering, Ohio State University, Columbus, Ohio, 43210 USA
Thakur Prasad Yadav*
Affiliation:
Hydrogen Energy Centre, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
Nilay Krishna Mukhopadhyay
Affiliation:
Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
Onkar Nath Srivastava
Affiliation:
Hydrogen Energy Centre, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Three different high entropy-alloys consisting of six elements (Ti, Zr, V, Cr, Ni, and Fe) with varying Fe content were synthesized by using the RF induction melting technique. All the as-cast, slow-cooled, and rapidly quenched alloys exhibit C14 Laves phase, and it is found to be stable at high temperature. A lattice contraction has been observed with the addition of Fe. To the best of our knowledge, this is the first report on the synthesis of a single-phase high-entropy complex intermetallic compound in the hexanary alloy system. It has been shown that the thermodynamic calculations following Miedema’s approach and the parametric approach utilizing several descriptors comprising configurational entropy, mixing enthalpy, atomic size mismatch, electronegativity, and valence electron concentration favor the stability of the high-entropy multicomponent Laves phase.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Mater. 6, 299 (2004).Google Scholar
Pradeep, K.G., Wanderka, N., Choi, P., Banhart, B.S., and Raabe, D.: Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography. Acta Mater. 61, 4696 (2013).10.1016/j.actamat.2013.04.059CrossRefGoogle Scholar
Senkov, O.N., Miller, J.D., Miracle, D.B., and Woodward, C.: Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 652 (2015).10.1038/ncomms7529CrossRefGoogle ScholarPubMed
Zaddach, A.J., Niu, C., Koch, C.C., and Lrving, D.L.: Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM 65, 1780 (2013).10.1007/s11837-013-0771-4CrossRefGoogle Scholar
Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).10.1016/j.actamat.2016.08.081CrossRefGoogle Scholar
Zhang, Z., Mao, M.M., Wang, J., Gludovatz, B., Zhang, Z., Mao, S.X., George, E.P., Yu, Q., and Ritchie, R.O.: Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 6, 10143 (2015).10.1038/ncomms10143CrossRefGoogle ScholarPubMed
Li, X., Tian, F., Schönecker, S., Zhao, J., and Vitos, L.: Ab initio-predicted micro-mechanical performance of refractory high entropy alloys. Sci. Rep. 5, 12334 (2015).10.1038/srep12334CrossRefGoogle ScholarPubMed
Li, Z., Pradeep, K.G., Deng, Y., Raabe, D., and Tasan, C.C.: Metastable high entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227 (2016).10.1038/nature17981CrossRefGoogle ScholarPubMed
Zou, Y., Ma, H., and Spolenak, R.: Ultra strong ductile and stable high-entropy alloys at small scales. Nat. Commun. 6, 7748 (2015).10.1038/ncomms8748CrossRefGoogle Scholar
Tang, Z., Yuan, T., Tsai, C.W., Yeh, J.W., Lundin, C.D., and Liaw, P.K.: Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy. Acta Mater. 99, 247 (2015).10.1016/j.actamat.2015.07.004CrossRefGoogle Scholar
Deng, Y., Tasan, C.C., Pradeep, K.G., Springer, H., Kostka, A., and Raabe, D.: Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 94, 124 (2015).10.1016/j.actamat.2015.04.014CrossRefGoogle Scholar
Fu, Z., Chen, W., Wen, H., Chen, Z., and Lavesrnia, E.J.: Effects of Co and sintering method on microstructure and mechanical behavior of a high-entropy Al0.6NiFeCrCo alloy prepared by powder metallurgy. J. Alloys Compd. 646, 175 (2015).10.1016/j.jallcom.2015.04.238CrossRefGoogle Scholar
Laurent, M., Akhatova, A., Perrière, L., Chebini, S., Sauvage, X., Leroy, E., and Champion, Y.: Insights into the phase diagram of the CrMnFeCoNi high entropy alloy. Acta Mater. 88, 355 (2015).10.1016/j.actamat.2015.01.068CrossRefGoogle Scholar
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).10.1016/j.pmatsci.2013.10.001CrossRefGoogle Scholar
He, J.Y., Liu, W.H., Wang, H., Wu, Y., Liu, X.J., Nieh, T.G., and Lu, Z.P.: Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 62, 105 (2014).10.1016/j.actamat.2013.09.037CrossRefGoogle Scholar
He, J.Y., Wang, H., Huang, H.L., Xu, X.D., Chen, M.W., Wu, Y., Liu, X.J., Nieh, T.G., An, K., and Lu, Z.P.: A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102, 187 (2016).10.1016/j.actamat.2015.08.076CrossRefGoogle Scholar
Ji, W., Fu, Z., Wang, W., Wang, H., Zhang, J., Wang, Y., and Zhang, F.: Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy. J. Alloys Compd. 589, 61 (2014).10.1016/j.jallcom.2013.11.146CrossRefGoogle Scholar
Schuh, B., Mendez-Martin, F., Völker, B., George, E.P., Clemens, H., Pippan, R., and Hohenwarter, A.: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 96, 258 (2015).10.1016/j.actamat.2015.06.025CrossRefGoogle Scholar
Senkov, O.N., Senkova, S.V., and Woodward, C.: Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 68, 214 (2014).CrossRefGoogle Scholar
Sriharitha, R., Murty, B.S., and Kottada, R.S.: Alloying: Thermal stability and strengthening in spark plasma sintered AlxCoCrCuFeNi high entropy alloys. J. Alloys Compd. 583, 419 (2014).CrossRefGoogle Scholar
King, D.J.M., Middleburgh, S.C., Mcgregor, A.G., and Cortie, M.B.: Predicting the formation and stability of single phase high-entropy alloys. Acta Mater. 104, 172 (2016).CrossRefGoogle Scholar
Maiti, S. and Steurer, W.: Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy. Acta Mater. 106, 87 (2015).10.1016/j.actamat.2016.01.018CrossRefGoogle Scholar
Yadav, T.P., Mukhopadhyay, S., Mishra, S.S., Mukhopadhyay, N.K., and Srivastava, O.N.: Synthesis of a single phase of high-entropy Laves intermetallics in the Ti–Zr–V–Cr–Ni equiatomic alloy. Philos. Mag. Lett. 97, 494 (2017).10.1080/09500839.2017.1418539CrossRefGoogle Scholar
Zhang, Y., Zhou, Y.J., Lin, J.P., Chen, G.L., and Liaw, P.K.: Solid-solution phase formation rules for multi-component alloys. Adv. Mater. 10, 534 (2008).Google Scholar
Guo, S., Ng, C., Lu, J., and Liu, C.T.: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 645 (2011).CrossRefGoogle Scholar
Sakintuna, B., Lamari-Darkrim, F., and Hirscher, M.: Metal hydride materials for solid hydrogen storage: A review. Int. J. Hydrogen Energy 32, 1121 (2007).CrossRefGoogle Scholar
Akiba, E. and Iba, H.: Hydrogen absorption by Laves phase related BCC solid solution. Intermetallics 6, 461 (1998).10.1016/S0966-9795(97)00088-5CrossRefGoogle Scholar
Akiba, E. and Nakamura, Y.: Hydrogenation properties and crystal structures of Ti–Mn–V BCC solid solution alloys. Met. Mater. Int. 7, 165 (2001).10.1007/BF03026955CrossRefGoogle Scholar
Xin, X., Johansson, R., Wolff, M., and Hjörvarsson, B.: Hydrogen in vanadium: Site occupancy and isotope effects. Phys. Rev. B 93, 134107 (2016).CrossRefGoogle Scholar
Sahlberg, M., Karlsson, D., Zlotea, C., and Jansson, U.: Superior hydrogen storage in high entropy alloys. Sci. Rep. 6, 36770 (2016).CrossRefGoogle ScholarPubMed
Murty, B.S., Yeh, J.W., and Ranganathan, S.: High Entropy Alloys, 1st ed. (Elsevier, Oxford, 2014).Google Scholar
Cantor, B.: Multicomponent and high entropy alloys. Entropy 16, 4749 (2014).CrossRefGoogle Scholar
Ranganathan, S.: Alloyed pleasures: Multimetallic cocktails. Curr. Sci. 85, 1404 (2003).Google Scholar
Senkov, O.N., Scott, J.M., Senkova, S.V., and Miracle, D.B.: Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd. 509, 6043 (2011).CrossRefGoogle Scholar
Firstov, S.A., Gorban, V.F., Krapivka, N.A., and Pechkovskii, E.P.: Strengthening and mechanical properties of cast high-entropy alloys. Kompoz. Nanostrukt. 2, 5 (2011).Google Scholar
Singh, A.K. and Kumar, N.: A geometrical parameter for the formation of disordered solid solutions in multicomponent alloys. Intermetallics 53, 112 (2014).CrossRefGoogle Scholar
Yang, X. and Zhang, Y.: Prediction of high-entropy stabilized solid-solution in multicomponent alloys. Mater. Chem. Phys. 132, 233 (2012).CrossRefGoogle Scholar
Firstov, S.A., Gorban, V.F., Danilenko, N.I., Karpec, M.V., Andreev, A.A., and Makarenko, E.S.: Thermal stability of superhard nitride coatings from high-entropy multicomponent Ti–V–Zr–Nb–Hf alloy. Powder Metall. Met. Ceram. 52, 560 (2014).CrossRefGoogle Scholar
Firstov, S.A., Gorban, V.F., Andreev, A.O., and Krapivka, N.A.: Super hard coatings on the basis of high-entropy alloys. Nauka Innovats. 9, 32 (2013).10.15407/scin9.05.032CrossRefGoogle Scholar
Trefilov, V.I., Mil’man, Y.V., and Firstov, S.A.: Physical Fundamentals of the Strength of Heat-Resistant Metal (Naukova Dumka, Kiev, 1975).Google Scholar
Pettifor, D.G.: Theory of the crystal structures of transition metals. J. Phys. C: Solid State Phys. 3, 367 (1970).CrossRefGoogle Scholar
Gorban, V.F., Krapivka, N.A., and Firstov, S.A.: High-entropy alloys: Interrelations between electron concentration, phase composition, lattice parameter, and properties. Phys. Met. Metallogr. 118, 970 (2017).10.1134/S0031918X17080051CrossRefGoogle Scholar
Guo, S. and Liu, C.T.: Phase selection rules for complex multicomponent alloys with equiatomic or close-to-equiatomic compositions. Chin. J. Nat. Med. 35, 85 (2013).Google Scholar
Swalin, R.A.: Thermodynamics of Solids, 2nd ed. (Wiley, New York, 1991).Google Scholar
Cahn, R.W. and Hassen, P.: Physical Metallurgy 1, 4th ed. (North Holland, Amsterdam, 1996).Google Scholar
Fang, S.S., Xiao, X., Lei, X., Li, W.H., and Dong, Y.D.: Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. J. Non-Cryst. Solids 321, 120 (2003).CrossRefGoogle Scholar
Senkov, O.N., Wilks, G.B., Scott, J.M., and Miracle, D.B.: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698 (2011).CrossRefGoogle Scholar
Wang, Z., Huang, Y., Yang, Y., Wang, J., and Liu, C.T.: Atomic-size effect and solid solubility of multicomponent alloys. Scr. Mater. 94, 28 (2015).CrossRefGoogle Scholar
Takeuchi, A. and Inoue, A.: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817 (2005).CrossRefGoogle Scholar
Senkov, O.N. and Miracle, D.B.: Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater. Res. Bull. 36, 2183 (2001).CrossRefGoogle Scholar
Web elements: The periodic table on the web. Available at: http://www.webelements.com/.Google Scholar
Guo, S., Hu, Q., Ng, C., and Liu, C.T.: More than entropy in high entropy alloys: Forming solid solutions or amorphous phase. Intermetallics 41, 96 (2013).CrossRefGoogle Scholar
Tong, C.J., Chen, Y.L., Chen, S.K., Yeh, J.W., Shun, T.T., Tsau, C.H., Lin, S.J., and Chang, S.Y.: Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36A, 881 (2005).10.1007/s11661-005-0283-0CrossRefGoogle Scholar
Guo, S. and Liu, C.T.: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog. Nat. Sci.: Mater. Int. 21, 433 (2011).CrossRefGoogle Scholar
Wang, W.H.: High-entropy metallic glasses. JOM. 66, 2067 (2014).CrossRefGoogle Scholar
Ding, H.Y. and Yao, K.F.: High entropy Ti20Zr20Cu20Ni20Be20 bulk metallic glass. J. Non-Cryst. Solids 364, 9 (2013).CrossRefGoogle Scholar
Cunliffe, A., Plummer, J., Figueroa, I., and Todd, I.: Glass formation in a high entropy alloy system by design. Intermetallics 23, 204 (2012).CrossRefGoogle Scholar
Ren, M.X., Li, B.S., and Fu, H.Z.: Formation condition of solid solution type high-entropy alloy. Trans. Nonferrous Met. Soc. China 23, 991 (2013).CrossRefGoogle Scholar
Miracle, D.B., Miller, J.D., Senkov, O.N., Woodward, C., Uchic, M.D., and Tiley, J.: Exploration and development of high entropy alloys for structural applications. Entropy 16, 494 (2014).CrossRefGoogle Scholar
Takeuchi, A., Amiya, K., Wada, T., Yubuta, K., Zhang, W., and Makino, A.: Entropies in alloy design for high-entropy and bulk glassy alloys. Entropy 15, 3810 (2013).CrossRefGoogle Scholar
Guo, S.: Phase selection rules for cast high entropy alloys: An overview. Mater. Sci. Technol. 31, 1223 (2015).10.1179/1743284715Y.0000000018CrossRefGoogle Scholar
Dong, Y., Lu, Y.P., Jiang, L., Wang, T.M., and Li, T.J.: Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys. Intermetallics 52, 105 (2014).CrossRefGoogle Scholar
Tsai, M.H.: Three strategies for the design of advanced high-entropy alloys. Entropy 18, 252 (2016).CrossRefGoogle Scholar
Mizutani, U.: Hume-Rothery rules for structurally complex alloy phases. MRS Bull. 37, 169 (2012). (CRC Press, Boca Raton, 2011).CrossRefGoogle Scholar
Massalski, T.B.: Comments concerning some features of phase diagrams and phase transformations. Mater. Trans. 51, 583 (2010).CrossRefGoogle Scholar
Supplementary material: File

Mishra et al. supplementary material

Mishra et al. supplementary material 1

Download Mishra et al. supplementary material(File)
File 3.8 MB