Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T21:21:50.380Z Has data issue: false hasContentIssue false

Synergistic reinforcement of carbon nanotubes and silicon carbide for toughening tantalum carbide based ultrahigh temperature ceramic

Published online by Cambridge University Press:  24 February 2016

Ambreen Nisar
Affiliation:
Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
Ariharan S.
Affiliation:
Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
Kantesh Balani*
Affiliation:
Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Tantalum carbide (TaC) is an ultrahigh temperature ceramic, where low damage tolerance limits its potential application in propulsion sector. In this respect, current work focuses on enhancing the toughness of TaC based composites via synergistic reinforcement of SiC and carbon nanotubes (CNTs). Spark plasma sintering of TaC, reinforced with 15 vol% SiC and 15 vol% CNT (processed at 1850 °C, 40 MPa, 5 min), has shown enhanced densification from ∼93% (for TaC) to ∼98%. Potential damage of the tubular CNTs to flaky graphite was revealed using transmission electron microscopy, and was supplemented via Raman spectroscopy. SiC addition has enhanced the hardness to ∼19.5 GPa while a decreases to 12.6 GPa was observed with CNT addition when compared to the hardness of TaC (∼15.5 GPa). The increase in the indentation fracture toughness (from 3.1 MPa m1/2 for TaC to 11.4 MPa m1/2) and fracture strength (from ∼23 MPa for TaC to ∼183 MPa) via synergetic reinforcement of SiC and CNT is mainly attributed to energy dissipating mechanisms such as crack branching, CNT bridging, and crack-deflection. In addition, the reduction of interfacial residual tensile-stresses with SiC- and CNT-reinforcement, resulting an overall increase in the fracture energy and toughening, is also established.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Storms, E.K. ed.: Refractory Materials: The Refractory Carbides, A Series of Monographs (Academic Press Inc., New York, 1967).Google Scholar
Kim, C., Gottstein, G., and Grummon, D.S.: Plastic flow and dislocation structures in tantalum carbide: Deformation at low and intermediate homologous temperatures. Acta Metall. Mater. 42(7), 2291 (1994).CrossRefGoogle Scholar
Samonov, G.V. and Petrikina, R.Y.: Sintering of metals, carbides and oxides by Ho pressing. Phys. Sintering 2, 1 (1970).Google Scholar
Liu, J.X., Kan, Y.M., and Zhang, G.J.: Pressureless sintering of tantalum carbide ceramics without additives. J. Am. Ceram. Soc. 93(2), 370 (2010).CrossRefGoogle Scholar
Khaleghi, E., Lin, Y.S., Meyers, M.A., and Olevsky, E.A.: Spark plasma sintering of tantalum carbide. Scr. Mater. 63(6), 577 (2010).CrossRefGoogle Scholar
Ruoff, W.C. and Yohe, A.L.: Ultrafine-grain tantalum carbide by high pressure hot pressing. J. Am. Ceram. Soc. 12(57), 647 (1978).Google Scholar
Zhang, X., Hilmas, G.E., Fahrenholtz, W.G., and Deason, D.M.: Hot pressing of tantalum carbide with and without sintering additives. J. Am. Ceram. Soc. 90(2), 393 (2007).CrossRefGoogle Scholar
Monteverde, F.: Ultra-high temperature HfB2–SiC ceramics consolidated by hot-pressing and spark plasma sintering. J. Alloys Compd. 428(1–2), 197 (2007).CrossRefGoogle Scholar
Zhang, X., Xu, L., Du, S., Liu, C., Han, J., and Han, W.: Spark plasma sintering and hot pressing of ZrB2–SiCW ultra-high temperature ceramics. J. Alloys Compd. 466(1–2), 241 (2008).CrossRefGoogle Scholar
Bajpai, I., Balani, K., and Basu, B.: Spark plasma sintered HA-Fe3O4-based multifunctional magnetic biocomposites. J. Am. Ceram. Soc. 96(7), 2100 (2013).CrossRefGoogle Scholar
Dubey, A.K., Ea, A., Balani, K., and Basu, B.: Multifunctional properties of multistage spark plasma sintered HA–BaTiO3-based piezobiocomposites for bone replacement applications. J. Am. Ceram. Soc. 96(12), 3753 (2013).CrossRefGoogle Scholar
Hackett, K., Verhoef, S., Cutler, R.A., and Shetty, D.K.: Phase constitution and mechanical properties of carbides in the Ta-C system. J. Am. Ceram. Soc. 92(10), 2404 (2009).CrossRefGoogle Scholar
Silvestroni, L., Bellosi, A., Melandri, C., Sciti, D., Liu, J.X., and Zhang, G.J.: Microstructure and properties of HfC and TaC-based ceramics obtained by ultrafine powder. J. Eur. Ceram. Soc. 31(4), 619 (2011).CrossRefGoogle Scholar
Zhang, X., Hilmas, G.E., and Fahrenholtz, W.G.: Densification, mechanical properties, and oxidation resistance of TaC–TaB2 ceramics. J. Am. Ceram. Soc. 91(12), 4129 (2008).CrossRefGoogle Scholar
Bakshi, S.R., Musaramthota, V., Lahiri, D., Singh, V., Seal, S., and Agarwal, A.: Spark plasma sintered tantalum carbide: Effect of pressure and nano-boron carbide addition on microstructure and mechanical properties. Mater. Sci. Eng., A 528(3), 1287 (2011).CrossRefGoogle Scholar
Silvestroni, L. and Sciti, D.: Effects of MoS additions on the properties of Hf- and Zr-composites produced by pressureless sintering. Scr. Mater. 57(2), 165 (2007).CrossRefGoogle Scholar
Chamberlain, A.L., Fahrenholtz, W.G., Hilmas, G.E., and Ellerby, D.T.: High strength ZrB2-based ceramics. J. Am. Ceram. Soc. 87(6), 1170 (2004).CrossRefGoogle Scholar
Zhu, S., Fahrenholtz, W.G., and Hilmas, G.E.: Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride-silicon carbide ceramics. J. Am. Ceram. Soc. 27, 2077 (2007).CrossRefGoogle Scholar
Liu, L., Ye, F., Zhang, Z., and Zhou, Y.: Microstructure and mechanical properties of the spark plasma sintered TaC/SiC composites. Mater. Sci. Eng., A 529(25), 479 (2011).CrossRefGoogle Scholar
Balani, K., Gonzalez, G., Agarwal, A., Hickman, R., O'Dell, J.S., and Seal, S.: Synthesis, microstructural characterization and mechanical property evaluation of vacuum plasma sprayed tantalum carbide. J. Am. Ceram. Soc. 89(4), 1419 (2006).CrossRefGoogle Scholar
Srinivasa, S.R., Musaramthota, V., Virzi, D.A., Keshri, A.K., Lahiri, D., Singh, V., Seal, S., and Agarwal, A.: Spark plasma sintered tantalum carbide-carbon nanotube composite: effect of pressure, carbon nanotube length and dispersion technique on microstructure and mechanical properties. Mater. Sci. Eng., A 528(6), 2538 (2011).Google Scholar
Balani, K., Bakshi, S.R., Mungole, T., and Agarwal, A.: Ab-initio molecular modeling of interfaces in tantalum-carbon system. J. Appl. Phys. 111, 063521 (2012).CrossRefGoogle Scholar
Liu, L., Liu, H., Ye, F., Zhang, Z., and Zhou, Y.: Microstructure and mechanical properties of the spark plasma sintered Ta2C ceramics. Ceram. Int. 38(6), 4707 (2012).CrossRefGoogle Scholar
Nieto, A., Lahiri, D., and Agarwal, A.: Graphene nanoplatelets reinforced tantalum carbide consolidated by spark plasma sintering. Mater. Sci. Eng., A 582, 338 (2013).CrossRefGoogle Scholar
Bakshi, S.R., Balani, K., and Agarwal, A.: Thermal conductivity of plasma-sprayed aluminum oxide—multiwalled carbon nanotube composites. J. Am. Ceram. Soc. 91(3), 942 (2008).CrossRefGoogle Scholar
Chen, Y., Balani, K., and Agarwal, A.: Do thermal residual stresses contribute to the improved fracture toughness of carbon nanotube/alumina nanocomposites? Scr. Mater. 66(6), 347 (2012).CrossRefGoogle Scholar
Anstis, G.R., Chantiklul, P., Lawn, B.R., and Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture toughness: I. Dircet crack measurements. J. Am. Ceram. Soc. 64(9), 533 (1981).CrossRefGoogle Scholar
Awaji, H. and Sakaida, Y.: V-notch technique for single-edge notched beam and chevron notch methods. J. Am. Ceram. Soc. 73(11), 3522 (1990).CrossRefGoogle Scholar
Wang, X., Padture, N.P., and Tanaka, H.: Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites. Nat. Mater. 3, 539 (2004).CrossRefGoogle ScholarPubMed
Chantikul, P., Anstis, G.R., Lawn, B.R., and Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture toughness: II. Strength method. J. Am. Ceram. Soc. 64(9), 539 (1981).CrossRefGoogle Scholar
Albedah, M.H.E-S.A. and Benyahia, F.: Diametral compression test: Validation using finite element analysis. Int. J. Adv. Manuf. Technol. 57(5–8), 501 (2011).Google Scholar
Procopio, A.T., Zavaliangos, A., and Cunningham, J.C.: Analysis of the diametrical compression test and the applicability to plastically deforming materials. J. Mater. Sci. 38(17), 3629 (2003).CrossRefGoogle Scholar
Yadhukulakrishnan, G.B., Rahman, A., Karumuri, S., Stackpoole, M.M., Kalkan, A.K., Singh, R.P., and Harimkar, S.P.: Spark plasma sintering of silicon carbide and multi-walled carbon nanotube reinforced zirconium diboride ceramic composite. Mater. Sci. Eng., A 552, 125 (2012).CrossRefGoogle Scholar
Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentaion experiments. J. Mater. Res. 7(6), 1564 (1992).CrossRefGoogle Scholar
Kim, B.R., Woo, K.D., Doh, J.M., Yoon, J.K., and Shon, I.J.: Mechanical properties and rapid consolidation of binderless nanostructured tantalum carbide. Ceram. Int. 35(8), 3395 (2009).CrossRefGoogle Scholar
Chen, Y., Balani, K., and Agarwal, A.: Analytical model to evaluate interface characteristics of carbon nanotube reinforced aluminum oxide nanocomposites. Appl. Phys. Lett. 92(1), 011916 (2008).CrossRefGoogle Scholar
Tercero, J.E., Namin, S., Lahiri, D., Balani, K., Tsoukias, N., and Agarwal, A.: Effect of carbon nanotube and aluminum oxide addition on plasma-sprayed hydroxyapatite coating's mechanical properties and biocompatibility. Mater. Sci. Eng., C 29(7), 2195 (2009).CrossRefGoogle Scholar
Keshri, A.K., Balani, K., Bakshi, S.R., Singh, V., Laha, T., Seal, S., and Agarwal, A.: Structural transformations in carbon nanotubes during thermal spray processing. Surf. Coat. Technol. 203(16), 2193 (2009).CrossRefGoogle Scholar
Zhang, T., Kumari, L., Du, G.H., Li, W.Z., Wang, Q.W., Balani, K., and Agarwal, A.: Mechanical properties of carbon nanotube–alumina nanocomposites synthesized by chemical vapor deposition and spark plasma sintering. Composites, Part A 40(1), 86 (2009).CrossRefGoogle Scholar
Singh, V., Diaz, R., Balani, K., Agarwal, A., and Seal, S.: Chromium carbide–CNT nanocomposites with enhanced mechanical properties. Acta Mater. 57(2), 335 (2009).CrossRefGoogle Scholar
Lee, C., Wei, X., Kysar, J.W., and Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385 (2008).CrossRefGoogle ScholarPubMed
Peng, B., Locascio, M., Zapol, P., Li, S., Mielke, S.L., Schatz, G.C., and Espinosa, H.D.: Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nanotechnol. 3(10), 626 (2008).CrossRefGoogle ScholarPubMed
Yakobson, B.I., Brabec, C.J., and Bernholc, J.: Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett. 76(14), 2511 (1996).CrossRefGoogle ScholarPubMed
Zhang, S., Khare, R., Belytschko, T., Hsia, K.J., Mielke, S.L., and Schatz, G.C.: Transition states and minimum energy pathways for the collapse of carbon nanotubes. Phys. Rev. B 73(075423–075429), 075423 (2006).CrossRefGoogle Scholar
Muthaswamy, L., Zheng, Y., Vajtai, R., Shehkawat, G., Ajayan, P., and Geer, R.E.: Variation of radial elasticity in multiwalled carbon nanotubes. Nano Lett. 7(12), 3891 (2007).CrossRefGoogle Scholar
Huang, Q., Jiang, D., Ovid’ko, I.A., and Mukherjee, A.: High-current-induced damage on carbon nanotubes: The case during spark plasma sintering. Scr. Mater. 63(12), 1181 (2010).CrossRefGoogle Scholar
Yang, K., He, J., Su, Z., Reppert, J.B., Skove, M.J., Tritt, T.M., and Rao, A.M.: Inter-tube bonding, graphene formation and anisotropic transport properties in spark plasma sintered multi-wall carbon nanotube arrays. Carbon 48(3), 756 (2010).CrossRefGoogle Scholar
Ghosh, D., Subhash, G., and Orlovskaya, N.: Measurement of scratch-induced residual stress within SiC grains in ZrB2–SiC composite using micro-Raman spectroscopy. Acta Mater. 56(18), 5345 (2008).CrossRefGoogle Scholar
Watts, J., Hilmas, G., Fahrenholtz, W.G., Brown, D., and Clausen, B.: Measurement of thermal residual stresses in ZrB2–SiC composites. J. Eur. Ceram. Soc. 31(9), 1811 (2011).CrossRefGoogle Scholar
Silvestroni, L., Pienti, L., Guicciardi, S., and Sciti, D.: Strength and toughness: The challenging case of TaC-based composites. Composites, Part B 72, 10 (2015).CrossRefGoogle Scholar
Taya, M., Hayashi, S., Kobayashi, A.S., and Yoon, H.S.: Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress. J. Am. Ceram. Soc. 73(5), 1382 (1990).CrossRefGoogle Scholar
Supplementary material: PDF

Nisar supplementary material

Figures S1-S7

Download Nisar supplementary material(PDF)
PDF 911.3 KB