Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T16:13:35.787Z Has data issue: false hasContentIssue false

The surface topography of non-shear treated pitch and PAN carbon fibers as viewed by the STM

Published online by Cambridge University Press:  31 January 2011

W.P. Hoffman
Affiliation:
Air Force Astronautics Laboratory, AL/RKPB, Edwards, California 93523–5000
W.C. Hurley
Affiliation:
Air Force Astronautics Laboratory, AL/RKPB, Edwards, California 93523–5000
P.M. Liu
Affiliation:
Air Force Astronautics Laboratory, AL/RKPB, Edwards, California 93523–5000
T.W. Owens
Affiliation:
Air Force Astronautics Laboratory, AL/RKPB, Edwards, California 93523–5000
Get access

Abstract

The atomic structure and roughness on the surface of a carbon fiber have a great effect on the degree of bonding of that fiber in a carbon fiber composite. Although there have been many studies on the bulk structure of these fibers, this is the first study dealing with the atomic surface structure of several carbon fibers. With the advent of the scanning tunneling microscope (STM), it is now possible to study both the roughness and structure of these fibers on the atomic scale. Type II PAN based fibers were found to have a rougher surface than type II pitch-based fibers. Similar to what has been observed in the interior of pitch fibers, the percentage of graphitic structure on the surface increased with the degree of heat treatment and with the modulus of the fiber.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hoffman, W. P., Vastola, F. J., and Walker, P. L., Jr., Carbon 22, 585 (1984).CrossRefGoogle Scholar
2.Eirich, F. R., in Interface Conversion for Polymer Coatings, edited by Weiss, P and Cheever, G. D (American Elsevier, New York, 1968).Google Scholar
3.Binnig, G., Rohrer, H., Gerber, Ch., and Weibel, E., Phys. Rev. Lett. 49, 57 (1982).CrossRefGoogle Scholar
4.Hoffman, W. P., Elings, V. B., and Gurley, J. A., Carbon 26, 754 (1988).CrossRefGoogle Scholar
5.Quate, C. F., Physics Today, Aug., 26 (1986).CrossRefGoogle Scholar
6.Hansma, P. K. and Tersoff, J, J. Appl. Phys. 61 (2), Rl (15 Jan 1987).CrossRefGoogle Scholar
7.Katagiri, G., Ishida, H., and Ishitani, A., Carbon 26, 565 (1988).CrossRefGoogle Scholar
8.Johnson, D. J., Tomizuka, I., and Watanabe, O., Carbon 13, 529 (1975).CrossRefGoogle Scholar
9.Bacon, R., Philos. Trans. R. Soc. London, A 294, 437 (1979).Google Scholar
10.Guigon, M. and Oberlin, A., Compos. Sci. Technol. 25, 231 (1986).CrossRefGoogle Scholar
11.Johnson, D. J., J. Phys. Appl. Phys. 20, 286 (1987).CrossRefGoogle Scholar
12.Endo, M., J. Mater. Sci. 23, 598 (1988).CrossRefGoogle Scholar
13.FitzGerald, J. D. and Taylor, G. H., Ext. Abs. Carbon 88, 386, Newcastle upon Tyne (1988).Google Scholar
14.Barnet, F. R. and Noor, M. K., Carbon 11, 281 (1973).CrossRefGoogle Scholar
15.Bennett, S. C. and Johnson, D. J., Carbon 17, 25 (1979).CrossRefGoogle Scholar
16.Guigon, M. and Oberlin, A., Compos. Sci. Technol. 27, 1 (1986).CrossRefGoogle Scholar
17.Johnson, D. J., Chem. and Ind. 18, 692 (1982).Google Scholar
18.Johnson, D. J., in Chemistry and Physics of Carbon, edited by Thrower, P. (Marcel Dekker, New York, 1987), Vol. 20, p. 1.Google Scholar
19.Bourrat, X., Roche, E. J., and Lavin, J. G., Carbon 28, 435 (1990).CrossRefGoogle Scholar
20.Brooks, J. D. and Taylor, G. H., in Chemistry and Physics of Carbon, edited by Walker, P. L. Jr (Marcel Dekker, New York, 1968), Vol. 4, p. 243.Google Scholar
21.Marsh, H. and Walker, P. L. Jr, in Chemistry and Physics of Carbon, edited by Walker, P. L. Jr and Thrower, P. (Marcel Dekker, New York, 1979), Vol. 15, p. 229.Google Scholar
22.Serin, V., Fourmeaux, R., Kihn, Y., and Sevely, J., Carbon 28, 573 (1990).CrossRefGoogle Scholar
23.Hoffman, W. P., Hurley, W. C., Owens, T. W., and Phan, H. T., Ext. Abs. Carbone 90, 204, Paris (1990).Google Scholar
24.Reiss, G., Vancea, J., Wittmann, H., Zweck, J., and Hoffmann, H., J. Appl. Phys. 67, 1156 (1990).CrossRefGoogle Scholar
25.Park, S. and Quate, C. F., Appl. Phys. Lett. 48, 112 (1986).CrossRefGoogle Scholar
26.Colton, R. J., Baker, S. M., Driscoll, R. J., Youngquist, M. G., Baldeschwieler, J. D., and Kaiser, W. J., J. Vac. Sci. Technol. A6, 349 (1988).CrossRefGoogle Scholar
27.Todd, J. D. and Pethica, J. B., J. Phys.: Condens. Matter 1, 9823 (1989).Google Scholar
28.Yao, J. E. and Jiao, Y. K., J. Vac. Sci. Technol. A8, 508 (1990).CrossRefGoogle Scholar
29.Tiedje, T., Varon, J., Deckman, H., and Stokes, J., J. Vac. Sci. Technol. 6, 372 (1988).CrossRefGoogle Scholar
30.Tersoff, J., Phys. Rev. Lett. 57, 440 (1986).CrossRefGoogle Scholar
31.Mizes, H. A., Park, S., and Harrison, W. A., Phys. Rev. B 36, 4491 (1987).CrossRefGoogle Scholar
32.Pethica, J. B., Phys. Rev. Lett. 57, 3235 (1986).Google Scholar
33.Soler, J. M., Baro, A. M., Garcia, N., and Rohrer, H., Phys. Rev. Lett. 57, 444 (1986).CrossRefGoogle Scholar