Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T00:32:09.101Z Has data issue: false hasContentIssue false

Surface morphology of oxygen-implanted wafers

Published online by Cambridge University Press:  31 January 2011

Sadao Nakashima
Affiliation:
NTT LSI Laboratories, 3-1, Morinosato Wakamiya, Atsugi 243-01, Japan
Katsutoshi Izumi
Affiliation:
NTT LSI Laboratories, 3-1, Morinosato Wakamiya, Atsugi 243-01, Japan
Get access

Abstract

The surface morphology of SIMOX wafers implanted at 180 keV with doses of 0.4–2.2 ⊠ 101816O+ cm−2 in a temperature range of 400–700 °C has been investigated using transmission electron microscopy (TEM) replica and cross-sectional TEM (XTEM) techniques. Wafer temperature during oxygen implantation strongly affects the morphology. A number of dents are formed on the surface of wafers implanted at temperatures higher than 510 °C with a dose of 1.8 ⊠ 1018 cm−2. Increasing the wafer temperature causes the dents to grow. The dents disappear by a high-temperature anneal of 1260 °C after the implantation. It is found that oxygen implantation through a 50-nm-thick screen oxide film prevents dent formation. A model explaining the dent formation and dent growth is also proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Izumi, K., Doken, M., and Ariyoshi, H., Electron. Lett. 14, 593 (1978).CrossRefGoogle Scholar
2Izumi, K., Omura, Y., Ishikawa, M., and Sano, E., Dig. Symp. VLSI Tech., Oiso, 10 (1982).Google Scholar
3Omura, Y., Nakashima, S., and Izumi, K., Dig. Symp. VLSI Tech., Kobe, 24 (1985).Google Scholar
4Nakashima, S., Maeda, Y., and Akiya, M., IEEE Trans. Electron Devices ED-33, 126 (1986).CrossRefGoogle Scholar
5Ohno, T., Shimaya, M., Izumi, K., and Shiono, N., IEEE Trans. Circuits Devices 3, 21 (1978).CrossRefGoogle Scholar
6Colinge, J. P., Electron. Lett. 22, 187 (1985).CrossRefGoogle Scholar
7Ruffell, J. P., Douglas, D. H.-Hamilton, Kaim, R. E., and Izumi, K., Nucl. Instrum. Methods B21, 229 (1987).CrossRefGoogle Scholar
8Lam, H. W., Pinizzotto, R. F., Yuan, H. T., and Bellavance, D. W., Electron. Lett. 17, 356 (1981).CrossRefGoogle Scholar
9Nakashima, S., Kanamori, S., and Izumi, K., Electron. Lett. 19, 568 (1983).CrossRefGoogle Scholar
10Nakashima, S. and Izumi, K., Proc. 12th Symp. ISIAT '89, 235 (1989).Google Scholar
11Mahl, H., Z. Tech. Physik 21, 17 (1940).Google Scholar
12Heidenreich, R. D. and Peck, V. G., J. Appl. Phys. 14, 23 (1943).CrossRefGoogle Scholar
13Williams, R. C. and Wyckoff, R. W. G., J. Appl. Phys. 17, 23 (1946).CrossRefGoogle Scholar
14Williams, R. C. and Wyckoff, R. W. G., J. Appl. Phys. 15, 712 (1944).CrossRefGoogle Scholar
15El-Ghor, M. K., Pennycook, S. J., Sjoreen, T. P., and Narayan, J., in Beam-Solid Interactions and Transient Processes, edited by Thompson, M. O., Picraux, S. T., and Williams, J. S. (Mater. Res. Soc. Symp. Proc. 74, Pittsburgh, PA, 1987), p. 591.Google Scholar
16Maszara, W. P., in Materials Modification and Growth Using Ion Beams, edited by Gibson, U., White, A. E., and Pronko, P. P. (Mater. Res. Soc. Symp. Proc. 93, Pittsburgh, PA, 1987), p. 143.Google Scholar
17Gibbons, J. F., Johnson, W. S., and Mylroie, S. W., Projected Range Statistics (John Wiley and Sons, Inc., 1975).Google Scholar
18Bullough, R., Eyre, B. L., and Perrin, R. C., J. Nucl. Appl. Technol. 9, 346 (1970).Google Scholar
19Nelson, R. S., Phil. Mag. 9, 291 (1964).CrossRefGoogle Scholar
20Nakashima, S. and Izumi, K., Proc. 11th Symp. ISIAT '87, 625 (1978).Google Scholar
21Badawi, M. H. and Anand, K. V., J. Phys. D: Appl. Phys. 10, 155 (1977).CrossRefGoogle Scholar
22Landolt-Bornstein, zahlewerte und funktionen aus physik, chemie, astronomie, geophysik und technik (Springer, 1960), 6 Aufl. BD.II-2a.Google Scholar