Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T07:28:45.048Z Has data issue: false hasContentIssue false

Supramolecular structures formed by the self assembly of ionic fullerenes in binary liquid mixtures

Published online by Cambridge University Press:  31 January 2011

Tohru Shiga*
Affiliation:
Toyota Central Research & Development Laboratories Inc., Nagakute-cho, Aichi-gun, Aichi-ken, 480-1192, Japan
Tomoyoshi Motohiro
Affiliation:
Toyota Central Research & Development Laboratories Inc., Nagakute-cho, Aichi-gun, Aichi-ken, 480-1192, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The self assembly of C60-N, N′-dimethylpyrrolidinium iodide (C60-DMePyI) in binary liquid mixtures has been investigated. C60-DMePyI self-organized into nanosheets in a mixture of toluene and iodomethane, and aggregated to form nanofibers in toluene. The dimensions of the nanosheets were several micrometers in length and about 100 nm in thickness. Scanning electron microscope observations indicated that a large number of nanorods having a diameter of about 20-nm formed matted nanosheets. When iodomethane alone was used as a solvent, supramolecular structures such as nanofibers and nanosheets were not produced. Structural analyses of the C60-DMePyI aggregates were carried out by laser Raman spectroscopy and x-ray diffraction (XRD). The Raman spectroscopic results suggested that an ordered chain of successive polyiodine units was formed in all the supramolecular aggregates. The XRD studies showed that the crystal systems of the nanosheets and nanofibers were monoclinic, though with different unit cells.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ying, Q., Marecek, J., Chu, B.: Solution behavior of buckminsterfullerene (C60) in benzene. J. Chem. Phys. 101, 2665 1994CrossRefGoogle Scholar
2Bulavin, M., Adamenko, I.I., Yashchuk, V.M., Yu, T., Ogul’Chansky, Y., Prylutskyy, I., Durov, S.S., Scharff, P.: Self-organization C60 nanoparticles in toluene solution. J. Mol. Liq. 93, 187 2001CrossRefGoogle Scholar
3Alargova, R., Deguchi, S., Tsujii, K.: Stable colloidal dispersions of fullerenes in polar organic solvents. J. Am. Chem. Soc. 123, 10460 2001CrossRefGoogle ScholarPubMed
4Angelini, G., De Maria, P., Fontana, A., Pierini, M.: Study of the aggregation properties of a novel amphiphilic C60 fullerene derivative. Langmuir 17, 6404 2001CrossRefGoogle Scholar
5Biju, V., Sudeep, P.K., Thomas, K.G., George, M.V.: Clusters of bis- and tris-fullerenes. Langmuir 18, 1831 2002CrossRefGoogle Scholar
6Baibarac, S., Mihut, L., Baltog, I., Mevellec, J.Y., Lefrant, S.: Surface-enhanced Raman scattering studies on C60 fullerene self-assemblies. Carbon 43, 1 2005CrossRefGoogle Scholar
7Okamura, H., Ide, N., Minoda, M., Komatsu, K., Fukuda, T.: Solubility and micellization behavior of C60 fullerenes with two well-defined polymer arm. Macromolecules 31, 1859 1998CrossRefGoogle Scholar
8Wang, X., Goh, S.H., Lu, Z.H., Lee, S.Y., Wu, C.: Light-scattering characterization of fullerene-containing poly(alkyl methacrylate)s in THF. Macromolecules 32, 2786 1999CrossRefGoogle Scholar
9Cao, T., Wei, F., Yang, Y., Huang, L., Zhao, X., Cao, W.: Microtribologic properties of a covalently attached nanostructured self-assembly film fabricated from fullerene carboxylic acid and diazoresin. Langmuir 18, 5186 2002CrossRefGoogle Scholar
10Ravi, P., Dai, S., Tan, C.H., Tam, K.C.: Self-assembly of alkali-soluble [60]fullerene containing poly(methacrylic acid) in aquous solution. Macromolecules 38, 933 2005CrossRefGoogle Scholar
11Teoh, S.K., Ravi, P., Dai, S., Tam, K.C.: Self-assembly of stimuli-responsive water-soluble [60]fullerene end-capped ampholytic block copolymer. J. Phys. Chem. B 109, 4431 2005CrossRefGoogle ScholarPubMed
12Wang, C., Ravi, P., Tam, K.C.: Morphological transformation of [60]fullerene-containing poly(acrylic acid) induced by the binding of surfactant. Langmuir 22, 2927 2006CrossRefGoogle ScholarPubMed
13Miyazawa, K., Kuwasaki, Y., Obayashi, A., Kuwabara, M.: C60 nanowhiskers formed by the liquid-liquid interfacial precipitation method. J. Mater. Res. 17, 83 2002CrossRefGoogle Scholar
14Miyazawa, K.: C70 Nanowhiskers fabricated by forming liquid/liquid interfaces in the systems of toluene soltuion of C70 and isopropyl alcohol. J. Am. Ceram. Soc. 85, 1297 2002CrossRefGoogle Scholar
15Miyazawa, K., Minato, J., Yoshii, T., Fujino, M., Suga, T.: Structural characterization of the fullerene nanotubes prepared by the liquid-liquid interfacial precipitation method. J. Mater. Res. 20, 688 2005CrossRefGoogle Scholar
16Gulidi, D.K., Gouloumis, A., Vazquez, P., Torres, T., Georgakis, V., Prato, M.: Nanoscale organization of a phthalocyanine-fullerene system: Remarkable stabilization of charges in photoactive 1-D nanotubules. J. Am. Chem. Soc. 127, 5811 2005CrossRefGoogle Scholar
17Haino, T., Matsumoto, Y., Fukazawa, Y.: Supramolecular nano networks formed by molecular-recognition-directed self-assembly of ditopic calix[5]arene and dumbbell [60]fullerene. J. Am. Chem. Soc. 127, 8936 2005CrossRefGoogle Scholar
18Theobald, J.A., Oxtoby, N.S., Champness, N.R., Beton, P.H., Dennis, T.J.S.: Growth induced reordering of fullerene clusters trapped in a two-dimensional supramolecular network. Langmuir 21, 2038 2005CrossRefGoogle Scholar
19Kawauchi, T., Kumaki, J., Yashima, E.: Nanosphere and nanonetwork formations of [60]fullerene-end-capped stereoregular poly(methyl methacrylate)s through stereocomplex formation cocmcbined with self-assembly of the fullerenes. J. Am. Chem. Soc. 128, 10560 2006CrossRefGoogle ScholarPubMed
20Guldi, D.M., Martin, N.: Fullerenes: From Synthesis to Optoelectronic Properties Kluwer Academic Publishers Dordrecht, The Netherlands 2002CrossRefGoogle Scholar
21Guldi, D.K., Zerbetto, F., Georgakilas, V., Prato, M.: Ordering fullerene materials at nanometer dimensions. Acc. Chem. Res. 38, 38 2005CrossRefGoogle ScholarPubMed
22Mannsberger, M., Kukovecz, A., Georgakilas, V., Rechthaler, J., Hasi, F., Allmaier, G., Prato, M., Kuzmany, H.: Scanning-probe microscopy and spectroscopy of carbon nanorods grown by self assembly. Carbon 42, 953 2004CrossRefGoogle Scholar
23Zhou, S., Burger, C., Chu, B., Sawamura, M., Nagahama, N., Toganoh, M., Hackler, U.H., Isobe, H., Nakamura, E.: Spherical bilayer vesicles of fullerene-based surfactants in water: A laser light scattering study. Science 291, 1944 2001CrossRefGoogle Scholar
24Guldi, D.K., Luo, C., Koktysh, D., Kotov, N.A., Ros, T. Da, Bosi, S., Prato, M.: Photoactive nanowires in fullerene-ferrocene dyad polyelectrolyte multilayers. Nano Lett. 2, 775 2002CrossRefGoogle Scholar
25Cassel, A.M., Asplund, C.L., Tour, J.M.: Self-assembling supramolecular nanostructures from a C60 derivative: Nanorods and vesicles. Angew. Chem. Int. Ed. Engl. 38, 2403 19993.0.CO;2-J>CrossRefGoogle Scholar
26Brough, P., Bonifazi, D., Prato, M.: Self-organization of amphiphilic [60]fullerene derivatives in nanorod-like morphologies. Tetrahedron 62, 2110 2006CrossRefGoogle Scholar
27Nakashima, N., Ishii, T., Shirakusa, M., Nakanishi, T., Murakami, H., Sagara, T.: Molecular bilayer-based superstructures of a fullerene-carrying ammonium amphiphile: Structure and electrochemistry. Chem-Eur. J. 291, 1944 2001Google Scholar
28Georgakilas, V., Pellarini, F., Guldi, D.K., Melle-Franco, M., Zerbetto, F.: Supramolecular self-assembled fullerene nanostructures. Proc. Natl. Acad. Sci. USA 99, 5075 2002CrossRefGoogle ScholarPubMed
29Maggini, M., Scorrano, G.: Addition of azomethine ylides to C60: Synthesis, characterization, and functionalization of fullerene pyrrolidines. J. Am. Chem. Soc. 115, 9798 1993CrossRefGoogle Scholar
30Guldi, D.M., Hungerbuhller, H., Asmus, K-D.: Radiolytic reduction of a water-soluble fullerene cluster. J. Phys. Chem. A 101, 1783 1997CrossRefGoogle Scholar
31Eisler, H-J., Hennrich, F.H., Gilb, S., Kappes, M.M.: Low frequency Raman active vibrations in fullerenes: 1. Monopolar modes. J. Phys. Chem. A 104, 1762 2000CrossRefGoogle Scholar
32Mizuno, M., Tanaka, J., Harada, I.: Electronic spectra and structures of polyiodide chain complexes. J. Phys. Chem. 85, 1789 1981CrossRefGoogle Scholar
33Janczak, J.: Synthesis, structural investigation, and solid-state properties of iodine-doped zirconium diphthalocyanine. Inorg. Chem. 42, 3549 2003CrossRefGoogle ScholarPubMed
34Stoimenov, P.K., Zaikovski, V., Klabunde, K.J.: Novel halogen and interhalogen adductes of nanoscale magnesium oxide. J. Am. Chem. Soc. 125, 12907 2003CrossRefGoogle ScholarPubMed
35Johnson, A.E., Myers, A.B.: Emission cross sections and line shapes for photodissociating triiodide in ethanol: Experimental and computational studies. J. Chem. Phys. 102, 3519 1995CrossRefGoogle Scholar
36Mohanambe, L., Vasudevan, S.: of iodine in a functionalized inorganic layered solid. Inorg. Chem. 43, 6421 2004CrossRefGoogle Scholar
37Nour, E.M., Chen, L.H., Laane, J.: Far-infrared and Raman spectroscopic studies of polyiodides. J. Phys. Chem. 90, 2841 1986CrossRefGoogle Scholar
38Teitelbaum, R.C., Ruby, S.L., Marks, T.J.: A resonance Raman/ iodine Mossbauer investigation of the starch-iodine structures. Aquous solution and iodine vapor preparations. J. Am. Chem. Soc. 102, 3222 1980CrossRefGoogle Scholar