Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T08:41:40.188Z Has data issue: false hasContentIssue false

Superconducting TaC nanoparticle-containing ceramic nanocomposites thermally transformed from mixed Ta and aromatic molecule precursors

Published online by Cambridge University Press:  07 August 2017

Manoj Kolel-Veetil*
Affiliation:
Chemistry Division, Naval Research Laboratory, Washington, District of Columbia 20375, USA
Catherine Walker
Affiliation:
Chemistry Division, Naval Research Laboratory, Washington, District of Columbia 20375, USA
Joseph Prestigiacomo
Affiliation:
Materials Sciences Division, Naval Research Laboratory, Washington, District of Columbia 20375, USA
Boris Dyatkin
Affiliation:
Chemistry Division, Naval Research Laboratory, Washington, District of Columbia 20375, USA
Syed Qadri
Affiliation:
Materials Sciences Division, Naval Research Laboratory, Washington, District of Columbia 20375, USA
Ramasis Goswami
Affiliation:
Materials Sciences Division, Naval Research Laboratory, Washington, District of Columbia 20375, USA
Kenan Fears
Affiliation:
Chemistry Division, Naval Research Laboratory, Washington, District of Columbia 20375, USA
Matthew Laskoski
Affiliation:
Chemistry Division, Naval Research Laboratory, Washington, District of Columbia 20375, USA
Michael Osofsky
Affiliation:
Materials Sciences Division, Naval Research Laboratory, Washington, District of Columbia 20375, USA
Teddy Keller
Affiliation:
Chemistry Division, Naval Research Laboratory, Washington, District of Columbia 20375, USA
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report the structure and synthesis approach for obtaining a ceramic nanocomposite pellet comprising ∼50 nm-sized TaC nanoparticles. A mixture of Ta metal powder and the carbon precursor 1,2,4,5-tetraphenylethynyl benzene, pelletized by vacuum pressing at 131 MPa, on further thermal treatment with Ar at 1400 °C yields such a ceramic composite. On air oxidation, the TaC nanoparticles are converted to Ta2O5 nanoparticles at 760 °C. Hardness measurements revealed that the composite exhibited a global hardness in the range of 1.23–1.57 GPa. However, nanoindentation studies showed that, locally, hardness of the TaC nanoparticles (∼15 GPa) approached that of the densified TaC ceramic. Superconducting studies of the pellet consistently exhibited two transitions with T c values of 10 K and 8.5 K, respectively, that corresponded to bulk TaC and to a component of unknown origin. The results discuss the morphological and constitutional characterizations of the TaC nanoparticle-containing composite.

Type
Invited Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

National Research Council Postdoctoral Fellow.

Contributing Editor: Xiaowei Yin

References

REFERENCES

Hong, Q-J. and Wall, A.v.d.: Prediction of the material with the highest known melting point from ab initio molecular dynamic calculations. Phys. Rev. B. 92, 020104 (2015).Google Scholar
Toth, L.E.: Refractory Materials, Vol. 7 (Transition Metal Carbides and Nitrides) (Elsevier, Amsterdam, the Netherlands, 2014).Google Scholar
Storms, E.K.: The Refractory Carbides (Academic Press, New York, 1967).Google Scholar
Padture, N.P., Gell, M., and Jordan, E.H.: Thermal barrier coatings for gas-turbine engine applications. Science 296, 280 (2002).CrossRefGoogle ScholarPubMed
Perepezko, J.H.: The hotter the engine, the better. Science 326, 1068 (2009).Google Scholar
Lu, K.: The future of metals. Science 328, 319 (2010).CrossRefGoogle ScholarPubMed
Liu, G., Zhang, G.J., Jiang, F., Ding, X.D., Sun, Y.J., Sun, J., and Ma, E.: Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat. Mater. 12, 344 (2013).Google Scholar
Meissner, V. and Franz, H.: Messungen mit Hilfe von flüssigem helium IX. Supraleitfähigkeit von Carbiden und Nitriden. Z. Phys. 65, 30 (1930).Google Scholar
Alexandre, N., Desmaison, M., Valin, F., and Boncoeur, M.: Solid state reaction between tantalum (Ta) and tantalum carbide (TaC) powders during Hiping. Key Eng. Mater. 132–136(Pt 2, Euro Ceramics V), 868 (1997).Google Scholar
Azcona, I., Ordonez, A., Sanchez, J.M., and Castro, F.: Hot isostatic pressing of ultrafine tungsten carbide-cobalt hardmetals. J. Mater. Sci. 37, 4189 (2002).Google Scholar
Kim, H.C., Shon, I.J., Garay, J.E., and Munir, Z.A.: Consolidation and properties of binderless cemented carbide “RCCFN”. Int. J. Refract. Met. Hard Mater. 22, 257 (2004).CrossRefGoogle Scholar
Ghaffari, S.A., Faghihi-Sani, M.A., Golestani-Fard, F., and Ebrahimi, S.: Pressureless sintering of Ta0.8Hf0.2C UHTC in the presence of MoSi2 . Ceram. Int. 39, 1985 (2013).Google Scholar
Pande, C.S. and Cooper, K.P.: Nanomechanics of Hall–Petch relationship in nanocrystalline materials. Prog. Mater. Sci. 54, 689 (2009).Google Scholar
Keller, T.M., Laskoski, M., Saab, A.P., Qadri, S.B., and Kolel-Veetil, M.K.: In situ formation of nanoparticle titanium carbide/nitride shaped ceramics from meltable precursor composition. J. Phys. Chem. C 118(51), 30153 (2014).CrossRefGoogle Scholar
Kolel-Veetil, M.K., Goswami, R., Fears, K.P., Qadri, S.B., Lambrakos, S.G., Laskoski, M., Keller, T.M., and Saab, A.P.: Formation and stability of metastable tungsten carbide nanoparticles. J. Mater. Eng. Perform. 24(5), 2060 (2015).CrossRefGoogle Scholar
Kolel-Veetil, M.K., Goswami, R., Fears, K.P., Qadri, S.B., Lambrakos, S.G., Laskoski, M., Keller, T.M., and Saab, A.P.: Stabilization of metastable W2C nanoparticles by carbon and formation of WC core–W shell nanoparticles by thermal treatment of a W/C monolith. Curr. Phys. Chem. 5(2), 122 (2015).CrossRefGoogle Scholar
Girolami, G.S., Jensen, J.A., Gozum, J.E., and Pollina, D.M.: Tailored organometallics as low-temperature CVD precursors to thin films. Mater. Res. Soc. Symp. Proc. 121(Better Ceram. Chem. 3), 429 (1988).Google Scholar
Souza, C.P., Favotto, C., Satre, P., Honore, A.L., and Roubin, M.: Preparation of tantalum carbide from an organometallic precursor. Braz. J. Chem. Eng. 16(1), 1 (1999).Google Scholar
Chang, Y-H., Wu, J-B., Chang, P-J., and Chiu, H-T.: Chemical vapor deposition of tantalum carbide and carbonitride thin films from Me3CE = Ta(CH2CMe3)3 (E = CH, N). J. Mater. Chem. 13(2), 365 (2003).Google Scholar
Lu, Y., Ye, L., Han, W., Sun, Y., Qiu, W., and Zhao, T.: Synthesis, characterization and microstructure of tantalum carbide-based ceramics by liquid polymer precursor method. Ceram. Int. 41(9 Part B), 12475 (2015).Google Scholar
Adamczak, A.D., Spriggs, A.A., Fitch, D.M., Radovic, M., and Grunlen, J.C.: Low-temperature formation of ultra-high-temperature transition metal carbides from salt-polymer precursors. J. Am. Ceram. Soc. 93(8), 2222 (2010).Google Scholar
Corriu, R.J-P., Gerbier, P., Guerin, C., and Hernier, B.: From preceramic polymers with interpenetrating networks to SiC/MC nanocomposites. Chem. Mater. 12(3), 805 (2000).Google Scholar
Stanley, D.R., Birchall, J.D., Hyland, J.N.K., Thomas, L., and Hodgetts, K.: Carbothermal synthesis of binary (MX) and ternary (M1, M2X) carbides, nitrides and borides from polymeric precursors. J. Mater. Chem. 2, 149 (1992).CrossRefGoogle Scholar
Wu, Q., Yu, Y., Xu, B., Fasel, C., Guillon, O., Buntkowsky, G., Yu, Z., Riedel, R., and Ionescu, E.: Single-source-precursor synthesis of SiC/HfC x N1−x -based ultrahigh-temperature ceramic nanocomposites. Nanoscale 6(22), 13678 (2014).Google Scholar
Yuan, J., Hapis, S., Breitzke, H., Xu, Y.P., Fasel, C., Kleebe, H.J., Burtkowski, G., Riedel, R., and Ionescu, E.: Single-source-precursor synthesis of hafnium-containing ultrahigh-temperature ceramic nanocomposites (UHTC-NCs). Inorg. Chem. 53, 10443 (2014).CrossRefGoogle ScholarPubMed
Balazsi, C., Dusza, J., Lojkowski, W., Reece, M., and Riedel, R.: Nanoceramics and ceramic-based nanocomposites. J. Eur. Ceram. Soc. 33(12), 2215 (2013).Google Scholar
Kolel-Veetil, M.K., Qadri, S.B., Osofsky, M., Keller, T.M., Goswami, R., and Wolf, S.A.: Size-induced effects on the superconducting properties of Mo2C nanoparticles. J. Phys. Chem. C 111(45), 16878 (2007).Google Scholar
Kolel-Veetil, M.K., Qadri, S.B., Osofsky, M., and Keller, T.M.: Formation of superconducting mixture of β-Mo2C nanopartciles and carbon nanotubes in an amorphous matrix of molybdenum compounds by the pyrolysis of a molybdenum derivative of a carboranylenesiloxane. Chem. Mater. 17(24), 6101 (2005).Google Scholar
Halder, N.C. and Wagner, C.N.J.: Separation of particle size and lattice strain in integral breadth measurements. Acta Crystallogr. 20, 312 (1966).Google Scholar
Scofield, J.H.: Hartree–Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectrosc. Relat. Phenom. 8, 129 (1976).Google Scholar
Jablonski, A. and Powell, C.J.: The electron attenuation length revisited. Surf. Sci. Rep. 47, 33 (2002).CrossRefGoogle Scholar
Tanuma, S., Powell, C.J., and Penn, D.R.: Calcultions of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50–2000 eV range. Surf. Interface Anal. 21, 165 (1994).CrossRefGoogle Scholar
Jones, K.M. and Keller, T.M.: Synthesis and characterization of multiple phenylethynylbenzenes via cross-coupling with activated palladium catalyst. Polymer 36(1), 187 (1995).CrossRefGoogle Scholar
Desmaison-Brut, M., Alexandre, N., and Desmaison, J.: Comparison of the oxidation behavior of two dense hot isostatically pressed tantalum carbide (TaC and Ta2C) materials. J. Eur. Ceram. Soc. 17, 1325 (1997).Google Scholar
Lashtabeg, A., Smart, M., Riley, D., Gillen, A., and Drennan, J.: The effect of extreme temperature in an oxidizing atmosphere on dense tantalum carbide (TaC). J. Mater. Sci. 48, 258 (2013).Google Scholar
Rudy, E., Benesovsky, F., and Toth, L.: Studies of the ternary systems of the group Va and VIa metals with boron and carbon. Z. Metallkd. 54, 345 (1963).Google Scholar
Lomberg, B.: Thermal expansion studies on the subcarbides of group V and VI transition metals. J. Less-Common Met. 120, 135 (1986).CrossRefGoogle Scholar
Khonakdar, H.A., Morshedian, J., Wagenknecht, U., and Jafari, S.H.: An investigation of chemical crosslinking effect on properties of high-density polyethylene. Polymer 44(15), 4301 (2003).CrossRefGoogle Scholar
Munro, R.G.: Material properties of a sintered α-SiC. J. Phys. Chem. Ref. Data 26(5), 1195 (1997).Google Scholar
Hagihara, K., Fushiki, T., and Nakano, T.: Control of microstructure and fracture toughness improvement of NbSi2/MoSi2 duplex lamellar silicides by TaC particles dispersion. Scr. Mater. 82, 53 (2014).Google Scholar
Giorgi, A.L., Szklarz, E.G., Storms, E.K., Bowman, A.L., and Matthias, B.T.: Effect of composition on the superconducting transition temperature of tantalum carbide and niobium carbide. Phys. Rev. 125(3), 837 (1962).Google Scholar
Hardy, G.F. and Hulm, J.K.: The superconductivity of some transition metal compounds. Phys. Rev. 93(5), 1004 (1954).Google Scholar
Giorgi, A.L., Szklarz, E.G., Storms, E.K., and Bowman, A.L.: Investigation of Ta2C, Nb2C and V2C for superconductivity. Phys. Rev. 129(4), 1524 (1963).CrossRefGoogle Scholar
Nieto, A., Kumar, A., Lahiri, D., Zhang, C., Seal, S., and Agarwal, A.: Oxidation behavior of graphene nanoplatelet reinforced tantalum carbide composites in high temperature plasma flow. Carbon 67, 398 (2014).Google Scholar
Nieto, A., Lahiri, D., and Agarwal, A.: Nanodynamic mechanical behavior of graphene nanoplatelet-reinforced tantalum carbide. Scr. Mater. 69(9), 678 (2013).CrossRefGoogle Scholar
Vilcalova, J., Saha, P., Hausnerova, B., and Quadrat, O.: Electrical properties of composites of hard metal carbides in a polymer matrix. Polym. Compos. 23(5), 942 (2002).CrossRefGoogle Scholar
Zhu, J., Sakaushi, K., Clavel, G., Shalom, M., Antonietti, M., and Fellinger, T-P.: A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting. J. Am. Chem. Soc. 137(16), 5480 (2015).Google Scholar
Porosoff, M.D., Kattel, S., Li, W., Liu, P., and Chen, J.G.: Identifying trends and descriptors for selective CO2 conversion to CO over transition metal carbides. Chem. Commun. 51(32), 6988 (2015).Google Scholar
Ishihara, A., Tamura, M., Ohgi, Y., Matsumoto, M., Matsuzawa, K., Mitsushima, S., Imai, H., and Ota, K-I.: Emergence of oxygen reduction activity in partially oxidized tantalum carbonitrides: Roles of deposited carbon for oxygen-reduction-reaction-site creation and surface electron conduction. J. Phys. Chem. C 117(37), 18837 (2013).Google Scholar
Presser, V., Heon, M., and Gogotsi, Y.: Carbon-derived carbons—From porous networks to nanotubes and graphene. Adv. Funct. Mater. 21, 810 (2011).Google Scholar
Amanipour, M., Babkhani, E.G., Towfighi, J., and Zamaniyan, A.: Evaluation of a tubular nano-composite ceramic membrane for hydrogen separation in methane steam reforming reaction. RSC Adv. 6(87), 84276 (2016).Google Scholar
Zhang, W., Banerjee, D., Liu, J., Schaef, H.T., Crum, J.V., Fernandez, C.A., Kakkadapu, R.K., Nie, Z., Nune, S.K., Motkuri, R.K., Chapman, K.W., Engelhard, M.H., Hayes, J.C., Silvers, K.L., Krishna, R., McGrail, B.P., Liu, J., and Thallapally, P.K.: Redox-active metal-organic composites for highly selective oxygen separation applications. Adv. Mater. 28(18), 3572 (2016).CrossRefGoogle ScholarPubMed
Meng, L., Zou, X., Guo, S., Ma, H., Zhao, Y., and Zhu, G.: Self-supported fibrous porous aromatic membranes for efficient CO2/N2 separations. ACS Appl. Mater. Interfaces 7(28), 15561 (2015).Google Scholar
He, C. and Tao, J.: Pt loaded two-dimensional TaC-nanosheet/graphene hybrid as an efficient and durable electrocatalyst for direct methanol fuel cells. J. Power Sources 324, 317 (2016).Google Scholar
Yun, S., Wu, M., Wang, Y., Shi, J., Lin, X., Hagfeldt, A., and Ma, T.: Pt-like behavior of high-performance counter electrodes prepared from binary tantalum compounds showing high electrocatalytic activity for dye-sensitized solar cells. ChemSusChem 6(3), 411 (2013).Google Scholar
Rees, E.J., Essaki, K., Brady, C.D.A., and Burstein, G.T.: Synthesis of electrocatalytic carbides C0.2: Non-Pt and non-precious catalyst. ECS Trans. 16(2), 147 (2008).CrossRefGoogle Scholar
Supplementary material: File

Kolel-Veetil supplementary material

Figure S1

Download Kolel-Veetil supplementary material(File)
File 751.3 KB