Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T03:09:42.874Z Has data issue: false hasContentIssue false

A study of TiO2 binder-free paste prepared for low temperature dye-sensitized solar cells

Published online by Cambridge University Press:  21 November 2012

Jeremy H. Yune
Affiliation:
Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, Menai, New South Wales 2234, Australia
Inna Karatchevtseva
Affiliation:
Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, Menai, New South Wales 2234, Australia
Gerri Triani*
Affiliation:
Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, Menai, New South Wales 2234, Australia
Klaudia Wagner
Affiliation:
Intelligent Polymer Research Institute, University of Wollongong, Innovation Campus, Fairy Meadow, New South Wales 2519, Australia
David Officer
Affiliation:
Intelligent Polymer Research Institute, University of Wollongong, Innovation Campus, Fairy Meadow, New South Wales 2519, Australia
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A binder-free titania paste was prepared by chemical modification of an acidic TiO2 sol with ammonia. By varying the ammonia concentration, the viscosity of the acidic TiO2 suspension increased, thereby allowing uniform films to be cast. The photoelectrochemical performance of TiO2 electrodes, cast as single layers, was dependent on the thermal treatment cycle. Fourier transform infrared spectroscopy was used to characterize the extent of residual organics and found that acetates from the TiO2precursor preparation were retained within the electrode structure after thermal treatment at 150 °C. Electrodes of nominal thickness 4 μm produced an energy conversion efficiency as high as 5.4% using this simple thermal treatment.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

O’Regan, B. and Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).Google Scholar
Yella, A., Lee, H.W., Tsao, H.N., Yi, C.Y., Chandiran, A.K., Nazeeruddin, M.K., Diau, E.W.G., Yeh, C.Y., Nazeeruddin, S.M., and Grätzel, M.: Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334(6056), 629 (2011).CrossRefGoogle ScholarPubMed
Ito, S., Murakami, T.N., Comte, P., Liska, P., Grätzel, C., Nazeeruddin, M.K., and Grätzel, M.: Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516(14), 4613 (2008).Google Scholar
Lindstrom, H., Holmberg, A., Magnusson, E., Malmqvist, L., and Hagfeldt, A.: A new method to make dye-sensitized nanocrystalline solar cells at room temperature. J. Photochem. Photobiol., A 145(1–2), 107 (2001).Google Scholar
Hagfeldt, A., Boschloo, G., Lindstrom, H., Figgemeier, E., Holmberg, A., Aramyos, V., Magnusson, E., and Malmqvist, L.: A system approach to molecular solar cells. Coord. Chem. Rev. 248(13–14), 1501 (2004).Google Scholar
Yamaguchi, T., Tobe, N., Matsumoto, D., and Arakawa, H.: Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes. Chem. Commun. 4767 (2007).Google Scholar
Yamaguchi, T., Tobe, N., Matsumoto, D, and Arakawa, H.: Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%. Sol. Energy Mater. Sol. Cells 94(5), 812 (2010).Google Scholar
Boschloo, G., Lindstrom, J., Magnusson, E., Holmberg, A., and Hagfeldt, A.: Optimization of dye-sensitized solar cells prepared by compression method. J. Photochem. Photobiol., A 148(1–3), 11 (2002).Google Scholar
Weerasinghe, H.C., Sirimanne, P.M., Simon, G.P., and Cheng, Y-B.: Cold isostatic pressing technique for producing highly efficient flexible dye-sensitised solar cells on plastic substrates. Prog. Photovoltaics Res. Appl. 20(3), 321 (2012).Google Scholar
Zhang, D., Yoshida, T., and Minoura, H.: Low temperature synthesis of porous nanocrystalline TiO2 thick film for dye-sensitized solar cells by hydrothermal crystallization. Chem. Lett. 31(9), 874 (2002).Google Scholar
Zhang, D., Yoshida, T., and Minoura, H.: Low-temperature fabrication of efficient porous titania photoelectrodes by hydrothermal crystallization at the solid/gas interface. Adv. Mat. 15(10), 814 (2003).Google Scholar
Zhang, D., Yoshida, T., Furuta, K., and Minoura, H.: Hydrothermal preparation of porous nano-crystalline TiO2 electrodes for flexible solar cells. J. Photochem. Photobiol., A 164(1–3), 159 (2004).Google Scholar
Murakami, T.N., Kijitori, Y., Kawashima, N., and Miyasaka, T.: Low temperature preparation of mesoporous TiO2 films for efficient dye-sensitized photoelectrode by chemical vapor deposition combined with UV light irradiation. J. Photochem. Photobiol., A 164(1–3), 187 (2004).Google Scholar
Zhang, D., Yoshida, T., Oekermann, T., Furuta, K., and Minoura, H.: Room-temperature synthesis of porous nanoparticulate TiO2 films for flexible dye-sensitized solar cells. Adv. Funct. Mat. 16(9), 1228 (2006).Google Scholar
Lewis, L.N., Spivack, J.L., Gasaway, S., Williams, E.D., Gui, J.Y., Manivannan, V., and Siclovan, O.P.: A novel UV-mediated low-temperature sintering of TiO2 for dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 90(7–8), 10411051 (2006).Google Scholar
Uchida, S., Tomiha, M., Takizawa, H., and Kawayara, M.: Flexible dye-sensitized solar cells by 28 GHz microwave irradiation. J. Photochem. Photobiol., A 164(1–3), 93 (2004).Google Scholar
Menzies, D.B., Dai, Q., Cheng, Y-B., Simon, G.P., and Spiccia, L.: One-step microwave calcination of ZrO2-coated TiO2 electrodes for use in dye-sensitized solar cells. C.R. Chim. 9(5–6), 713 (2006).Google Scholar
Park, N.G., Kim, K.M., Kang, M.G., Ryu, K.S., Chang, S.H., and Shin, Y.J.: Chemical sintering of nanoparticles: A methodology for low-temperature fabrication of dye-sensitized TiO2 films. Adv. Mater. 17(19), 2349 (2005).Google Scholar
Kim, K., Lee, G.W., Yoo, K., Kim, D.Y., Kim, J.K., and Park, N.G.: Improvement of electron transport by low-temperature chemically assisted sintering in dye-sensitized solar cell. J. Photochem. Photobiol., A 204(2–3), 144 (2009).CrossRefGoogle Scholar
Zhang, P., Wu, C., Han, Y., Jin, T., Chi, B., Pu, J., and Jian, L.: Low-temperature preparation of hierarchical structure TiO2 for flexible dye-sensitized solar cell. J. Am. Ceram. Soc. 95(4), 1 (2012).Google Scholar
Weerasinghe, H.C., Franks, G.V., Plessis, J.D., Simon, G.P., and Cheng, Y-B.: Anomalous rheological behavior in chemically modified TiO2 colloidal pastes prepared for flexible dye-sensitized solar cells. J. Mater. Chem. 20(44), 9954 (2010).Google Scholar
Weerasinghe, H.C., Sirimanne, P.M., Franks, G.V., Simon, G.P., and Cheng, Y-B.: Low temperature chemically sintered nano-crystalline TiO2 electrodes for flexible dye-sensitized solar cells. J. Photochem. Photobiol., A 213(1), 30 (2010).Google Scholar
Karatchevtseva, I., Cassidy, D.J., Zhang, Z.M., Triani, G., Finnie, K.S., Cram, S.L., and Barbe, C.J.: Crystallization of TiO2 powders and thin films prepared from modified titanium alkoxide precursors. J. Am. Ceram. Soc. 91(6), 2015 (2008).Google Scholar
Liu, T.X., Li, F.B., and Li, X.Z.: Effects of peptizing conditions on nanometer properties and photocatalytic activity of TiO2 hydrosols prepared by H2TiO3. J. Hazard. Mater. 155(1–2), 90 (2008).Google Scholar
Winardi, S., Mukti, R.R., Kumar, K.N.P., Wang, J.Z., Wunderlich, W., and Okubo, T.: Critical nuclei size, initial particle size and packing effect on the phase stability of sol-peptization-gel-derived nanostructured titania. Langmuir 26(7), 4567 (2010).Google Scholar
Ito, S., Nazeeruddin, M.K., Liska, P., Comte, P., Charvet, R., Pechy, P., Jirousek, M., Kay, A., Zakeeruddin, S.M., and Grätzel, M.: Photovoltaic characterization of dye-sensitized solar cells: Effect of device masking on conversion efficiency. Prog. Photovoltaics Res. Appl. 14, 589 (2006).CrossRefGoogle Scholar
Doeuff, S., Henry, M., Sanchez, C., and Livage, J.: Hydrolysis of titanium alkoxides: Modification of the molecular precursor by acetic acid. J. Non-Cryst. Solids 89(1–2), 206216 (1987).CrossRefGoogle Scholar
Dhungel, S.K. and Park, J.G.: Optimization of paste formulation for TiO2 nanoparticles with wide range of size distribution for its application in dye sensitized solar cells. Renew. Energy 35(12), 2776 (2010).Google Scholar
Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniwska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57(4), 603 (1985)Google Scholar
Socrates, G.: Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed. (Wiley & Sons, Ltd., Chichester, UK, 2001), p. 128.Google Scholar
Hsiao, P.T. and Teng, H.S.: Coordination of Ti4+ sites in nanocrystalline TiO2 films used for photoinduced electron conduction: Influence of nanoparticle synthesis and thermal necking. J. Am. Ceram. Soc. 92(4), 888893 (2009).CrossRefGoogle Scholar
Miyasaka, T., Ikegami, M., and Kijitori, Y.: Photovoltaic performance of plastic dye-sensitized electrodes prepared by low-temperature binder-free coating of mesoscopic titania. J. Electrochem. Soc. 154(5), A455 (2007).Google Scholar
Wang, Q., Moser, J.E., and Grätzel, M.: Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B 109, 14945 (2005).Google Scholar
Hoshikawa, T.T., Yamada, M., Kikuchi, R., and Eguchi, K.: Impedance analysis for dye-sensitized solar cells with a three-electrode system. J. Electrochem. Soc. 152, E68 (2005).Google Scholar
Hsu, C.P., Lee, K.M., Huang, J.T.W., Lin, C.Y., Lee, C.H., Wang, L.P., Tsai, S.Y., and Ho, K.C.: EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells. Electrochim. Acta 53, 7514 (2008).Google Scholar
Supplementary material: File

Yune Supplementary Material

Appendix

Download Yune Supplementary Material(File)
File 3.8 MB