Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T17:55:30.976Z Has data issue: false hasContentIssue false

Study of interdiffusion reaction at the CdS/CdTe interface

Published online by Cambridge University Press:  23 February 2011

Deliang Wang*
Affiliation:
Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
Zerong Hou
Affiliation:
Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
Zhizhong Bai
Affiliation:
Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

To detect the relatively strong scattering signals of the Raman scattering and the x-ray diffraction (XRD) from CdS and those from the CdS/CdTe interface, an inverted CdTe solar cell structure was prepared and a 35-nm-thick CdS film was deposited on the surface of a CdTe solar cell structure. The Raman and high-resolution XRD scattering spectra allowed us to qualitatively study the interdiffusion and its related reactions at the CdS/CdTe interface. Interdiffusion began to occur at a relatively low temperature of about 350 °C, which coincided with the CdS phase transformation from cubic to hexagonal phase. Substantial interdiffusion of S and Te occurred after heat treatment at a temperature of 550 °C, resulting in formation of S-rich and Te-rich CdSxTe1−x alloy at the CdS/CdTe interface, with S and Te atomic concentration of ∼9% and 11% diffused into the CdTe and the CdS films, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lane, D.W.: A review of the optical band gap of thin film CdSxTe1−x. Sol. Energy Mater. Sol. Cells 90, 1169 (2006).CrossRefGoogle Scholar
2.Metzger, W.K., Albin, D., Romero, M.J., Dippo, P., and Young, M.: CdCl2 treatment, S diffusion, and recombination in polycrystalline CdTe. J. Appl. Phys. 99, 103703 (2006).CrossRefGoogle Scholar
3.Feng, Z.C., Chou, H.C., Rohatgi, A., Lim, G.K., Wee, A.T.S., and Tan, K.L.: Correlations between CdTe/CdS/SnO2/glass solar cell performance and the interface/surface properties. J. Appl. Phys. 79, 2151 (1996).CrossRefGoogle Scholar
4.Krishna, K.V. and Dutta, V.: Effect of in situ CdCl2 treatment on spray deposited CdTe/CdS heterostructure. J. Appl. Phys. 96, 3962 (2004).CrossRefGoogle Scholar
5.Dhere, R.G., Albin, D.S., Asher, S.E., Moutinho, H.R., Compton, D., and Gessert, T.A.: Preparation and characterization of CdSxTe1−x alloys and films, in II–VI Compound Semiconductor Photovoltaic Materials, edited by Noufi, R., Birkmire, R.W., Lincot, D., and Schock, H.W. (Mater. Res. Soc. Symp. Proc. 668, Warrendale, PA, 2001) H5.21.Google Scholar
6.Fischer, A., Anthony, L., and Compaan, A.D.: Raman analysis of short-range clustering in laser-deposited CdSxTe1−x films. Appl. Phys. Lett. 72, 2559 (1998).CrossRefGoogle Scholar
7.Wu, X., Asher, S., Levi, D.H., King, D.E., Yan, Y., Gessert, T.A., and Sheldon, P.: Interdiffusion of CdS and Zn2SnO4 layers and its application in CdS/CdTe polycrystalline thin-film solar cells. J. Appl. Phys. 89, 4564 (2001).CrossRefGoogle Scholar
8.Tsuji, M., Aramoto, T., Ohyama, H., Hibino, T., and Omura, K.: Characterization of CdS thin-film in high efficient CdS/CdTe solar cells. Jpn. J. Appl. Phys. 39, 3902 (2000).CrossRefGoogle Scholar
9.Chu, T.L., Chu, S.S., Schultz, N., Wang, C., and Wu, C.Q.: Solution-grown cadmium-sulfide films for photovoltaic devices. J. Electrochem. Soc. 139, 2443 (1992).CrossRefGoogle Scholar
10.Fischer, A., Feng, Z., Bykov, E., Contreras-Puente, G., Compaan, A., Castillo-Alvarado, F.L., Avendano, J., and Mason, A.: Optical phonons in laser-deposited CdSxTe1−x films. Appl. Phys. Lett. 70, 3239 (1997).CrossRefGoogle Scholar
11.Litran, R., Alcantara, R., Blanco, E., and Ramirez-Del-Solar, M.: Confinement of CdS nanocrystals in a sonogel matrix. J. Sol-Gel Sci. Technol. 8, 275 (1997).CrossRefGoogle Scholar
12.Chuu, D.S., Dai, C.M., Hsieh, W.F., and Tsai, C.T.: Raman investigations of the surface-modes of the crystallites in CdS thin-films grown by pulsed laser and thermal evaporation. J. Appl. Phys. 69, 8402 (1991).CrossRefGoogle Scholar
13.Zelaya-Angel, O., Castillo-Alvarado, F.L., Avendailo-Lopez, J., Escamilla-Esquivel, A., Contreras-Puente, G., Lozada-Morales, R., and Torres-Delgado, G.: Raman studies in CdS thin films in the evolution from cubic to hexagonal phase. Solid State Commun. 104, 161 (1997).CrossRefGoogle Scholar
14.Zelaya-Angel, O. and Lozada-Morales, R.: Sphalerite-wurtzite phase transformation in CdS. Phys. Rev. B. 62, 13064 (2000).CrossRefGoogle Scholar
15.Ohata, K., Saraie, J., and Tanaka, T.: Optical energy-gap of mixed-crystal CdSxTe1−x. Jpn. J. Appl. Phys. 12, 1641 (1973).CrossRefGoogle Scholar
16.Nunoue, S.Y., Hemmi, T., and Kato, E.: Mass-spectrometric study of the phase boundaries of the CdS-CdTe system. J. Electrochem. Soc. 137, 1248 (1990).CrossRefGoogle Scholar
17.Wang, D., Zhao, J., Chen, B., and Zhu, C.: Lattice vibration fundamentals in nanocrystalline anatase investigated with Raman scattering. J. Phys. Condens. Matter 20, 085212 (2008).CrossRefGoogle Scholar
18.Zeiri, L., Patla, I., Acharya, A., Golan, Y., and Efrima, S.: Raman spectroscopy of ultranarrow CdS nanostructures. J. Phys. Chem. C 111, 11843 (2007).CrossRefGoogle Scholar
19.Prabhu, R.R. and Khadar, M.A.: Study of optical phonon modes of CdS nanoparticles using Raman spectroscopy. Bull. Mater. Sci. 31, 511 (2008).CrossRefGoogle Scholar
20.Ingale, A. and Rustagi, K.C.: Raman spectra of semiconductor nanoparticles: Disorder-activated phonons. Phys. Rev. B. 58, 7197 (1998).CrossRefGoogle Scholar
21.Hwang, Y.-N. and Park, S.-H.: Size-dependent surface phonon mode of CdSe quantum dots. Phys. Rev. B 59, 7285 (1999).CrossRefGoogle Scholar
22.Rodriguez, M.E., Zelaya-Angel, O., Perez Bueno, J.J., Jimenez-Sandoval, S., and Tirado, L.: Influence of Te inclusions and precipitates on the crystalline and thermal properties of CdTe single crystals. J. Cryst. Growth 213, 259 (2000).CrossRefGoogle Scholar
23.Pine, A.S. and Dresselhause, G.: Raman Scattering in Paratellurite, TeO2. Phys. Rev. B 5, 4087 (1972).CrossRefGoogle Scholar
24.Khallaf, H., Chai, G., Lupan, O., Chow, L., Park, S., and Schulte, A.: Characterization of gallium-doped CdS thin films grown by chemical bath deposition. Appl. Surf. Sci. 255, 4129 (2009).CrossRefGoogle Scholar
25.Bartolo-Perez, P., Castro-Rodriguez, R., Caballero-Briones, F., Cauich, W., and Pena, J.L.: X-ray photoelectron spectroscopy study of CdTe oxide films grown by rf sputtering with an Ar-NH3 plasma. Surf. Coat. Tech. 155, 16 (2002).CrossRefGoogle Scholar
26.Niles, D.W., Herdt, G., and Jassim, M.A.: An x-ray photoelectron spectroscopy investigation of O impurity chemistry in CdS thin films grown by chemical bath deposition. J. Appl. Phys. 81, 1978 (1997).CrossRefGoogle Scholar
27.Nair, M.T.S., Nair, P.K., Zingaro, R.A., and Meyers, E.A.: Conversion of chemically deposited photosensitive CdS thin films to n-type by air annealing and ion exchange reaction. J. Appl. Phys. 75, 1557 (1994).CrossRefGoogle Scholar
28.Hammond, J.S., Gaarenstroom, S.W., and Winograd, N.: X-ray photoelectron spectroscopic studies of cadmium- and silver-oxygen surfaces. Anal. Chem. 47, 2193 (1975).CrossRefGoogle Scholar
29.Charton, P., Gengembre, L., and Armand, P.: TeO2-WO3 glasses: Infrared, XPS and XANES structural characterizations. J. Solid State Chem. 168, 175 (2002).CrossRefGoogle Scholar