Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T03:50:20.193Z Has data issue: false hasContentIssue false

A study of aluminum speciation in aluminum chloride solutions by small angle x-ray scattering and 27Al NMR

Published online by Cambridge University Press:  03 March 2011

Amit Singhal
Affiliation:
Department of Materials Science and Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012
Keith D. Keefer
Affiliation:
Department of Materials Science and Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012
Get access

Abstract

Aluminum ions may exist in one of several different types of polynuclear species depending upon the degree to which it is hydrolyzed. The hydrolysis of aluminum can be explained by a metastable equilibrium among Al(H2O)3+6, Al(OH)(H2O)2+5, Al13O4(OH)24(H2O)7+12, and an oligomer. We have made small angle x-ray scattering and 27Al NMR measurements on 0.3 M aluminum chloride solutions over a range of OH/Al ratios. 27Al NMR shows two sharp peaks corresponding to the monomer Al(H2O)3+6 and the tetrahedrally coordinated aluminum in Al13O4(OH)24(H2O)7+12, and a broad peak due to the octahedrally coordinated aluminum in the oligomer. The observed radius of gyration (Rg) of the species in solution increases from 3.0 to 3.6 A, and the intensity at zero angle (which is proportional to the weight average molecular weight of the species) also increases as the OH/Al ratio increases from 1.0 to 2.2. The oligomer has an Rg of approximately 3.3 A, a hydrolysis ratio close to 2.0, and may be a six-membered ring with a structure similar to that of a gibbsite layer.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Clark, D. E., in Science of Ceramic Chemical Processing, edited by Hench, L.L. and Ulrich, D.R. (John Wiley, New York, 1986), p. 237.Google Scholar
2Lannutti, J. J. and Clark, D. E., in Better Ceramics Through Chemistry, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 32, Elsevier Science Publishing, New York, 1984), p. 375.Google Scholar
3Birchall, J. D., in Fabrication Science 3, edited by Taylor, D. (British Ceramics Society, 1983).Google Scholar
4Wood, T. E., Siedle, A. R., Hill, J. R., Skarjune, R. P., and Goodbrake, C. J., in Better Ceramics Through Chemistry IV, edited by Zelinski, B. J., Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), p. 97.Google Scholar
5Akitt, J. W. and Farthing, A., J. Chem. Soc. Dalton. Trans., 1606 (1981).CrossRefGoogle Scholar
6Baes, C. F. and Mesmer, R. E., The Hydrolysis of Cations (John Wiley, New York, 1976).Google Scholar
7Bottero, J. Y., Tchoubar, D., Cases, J. M., and Fiesinger, F., J. Phys. Chem. 86, 3667 (1982).CrossRefGoogle Scholar
8Rausch, W. V. and Bale, H. D., J. Chem. Phys. 40, 3391 (1964).CrossRefGoogle Scholar
9Schaefer, D. W., Shelleman, R. A., Keefer, K. D., and Martin, J. E., Physica 140A, 105 (1986).CrossRefGoogle Scholar
10Akitt, J. W., Greenwood, N. N., Khandelwal, B. L., and Lester, G. D., J. Chem. Soc. Dalton Trans., 604 (1972).CrossRefGoogle Scholar
11Akitt, J. W. and Farthing, A., J. Chem. Soc. Dalton Trans., 1617 (1981).CrossRefGoogle Scholar
12Akitt, J. W. and Farthing, A., J. Chem. Soc. Dalton Trans., 1624 (1981).CrossRefGoogle Scholar
13Bottero, J. Y., Cases, J. M., Fiesinger, F., and Poirier, J. E., J. Phys. Chem. 84, 2933 (1980).CrossRefGoogle Scholar
14Aveston, J., J. Chem. Soc, 4438 (1965).CrossRefGoogle Scholar
15Akitt, J. W. and Farthing, A., J. Chem. Soc. Dalton Trans., 1609 (1981).CrossRefGoogle Scholar
16Johansson, G., Acta Chem. Scand. 14, 769 (1960).CrossRefGoogle Scholar
17Johansson, G., Acta Chem. Scand. 14, 771 (1960).CrossRefGoogle Scholar
18Parthasarthy, N. and Buffle, J., Water Res. 19, 25 (1985).Google Scholar
19Hsu, P. H. and Bates, T. F., Mineralog. Mag. 33, 749 (1964).Google Scholar
20Hem, J. D. and Roberson, C. E., U.S.G.S. Water Supply Paper 1827A (United States Government Printing Office, Washington, DC, 1967).Google Scholar
21Hem, J. D. and Roberson, C. E., Chemical Modelling of Aqueous Systems II (American Chemical Society, Washington, DC, 1990), p. 429.CrossRefGoogle Scholar
22Stol, R. J., Van Helden, A. K., and De Bruyn, P. L., J. Colloid. Int. Sci. 57, 115 (1976).CrossRefGoogle Scholar
23Smith, R. W. and Hem, J. D., U.S.G.S. Water Supply Paper 1827D (United States Government Printing Office, Washington, DC, 1972).Google Scholar
24Turner, R. C., Can. J. Chem. 54, 1910 (1976).CrossRefGoogle Scholar
25Matijevitch, E., Janauer, G. E., and Kerker, M., J. Colloid. Int. Sci. 19, 333 (1964).CrossRefGoogle Scholar
26Matijevic, E., Mathai, K. G., Ottewill, R. H., and Kerker, M., J. Phys. Chem. 65, 826 (1961).CrossRefGoogle Scholar
27Von Schonherr, H., Gorz, H., Muller, D., and Gessner, W., Z. Anorg. Allg. Chem. 476, 195 (1981).CrossRefGoogle Scholar
28Fripiat, J. J., Cauwelaert, F., and Bosmans, H., J. Phys. Chem. 69, 2458 (1965).CrossRefGoogle Scholar
29Letterman, R. Da. and Asolekar, S.R., Water. Res. 24, 941 (1990).CrossRefGoogle Scholar
30Akitt, J. W. and Elders, J. M., J. Chem. Soc. Dalton Trans., 1347 (1988).CrossRefGoogle Scholar
31Akitt, J. W. and Mann, B. E., J. Magn. Reson. 44, 584 (1981).Google Scholar
32Bertsch, P. M., Thomas, G. W., and Barnhisel, R., Soil. Sci. Soc. Am. J. 50, 825 (1986).CrossRefGoogle Scholar
33Bertsch, P. M., Soil. Sci. Soc. Am. J. 51, 825 (1987).CrossRefGoogle Scholar
34Turner, R. C. and Ross, G. J., Can. J. Chem. 48, 723 (1970).CrossRefGoogle Scholar
35Johansson, G., Acta Chem. Scand. 16, 403 (1962).CrossRefGoogle Scholar
36Brown, P. L., Sylva, R. N., Batley, G. E., and Ellis, J., J. Chem. Soc. Dalton Trans., 1967 (1985).CrossRefGoogle Scholar
37Akitt, J. W., Elders, J. M., Fontaine, X. L. R., and Kundu, A. K., J. Chem. Soc. Dalton Trans., 1889 (1989).CrossRefGoogle Scholar
38Guinier, A. and Fournet, G., Small Angle Scattering ofX-rays (John Wiley, New York, 1955).Google Scholar
39Stabinger, H. and Kratky, O., Makrom. Chem. 179, 1655 (1978).CrossRefGoogle Scholar
40Fu, G., Nazar, L. F., and Bain, A. D., Chem. Mater. 3, 602 (1991).CrossRefGoogle Scholar
41Bradley, S. M., Kydd, R. A., and Yamdagni, R., J. Chem. Soc. Dalton Trans., 2653 (1990).CrossRefGoogle Scholar
42Akitt, J. W. and Elders, J. M., J. Chem. Soc. Faraday Trans. 1 81, 1923 (1985).CrossRefGoogle Scholar