Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T03:32:54.625Z Has data issue: false hasContentIssue false

Structure of twinned {113} defects in high-dose oxygen implanted silicon-on-insulator material

Published online by Cambridge University Press:  31 January 2011

Supapan Visitserngtrakul
Affiliation:
Department of Chemical, Bio and Materials Engineering, Arizona State University, Tempe, Arizona 85287
Stephen J. Krause
Affiliation:
Department of Chemical, Bio and Materials Engineering, Arizona State University, Tempe, Arizona 85287
John C. Barry
Affiliation:
Electron Microscope Centre, University of Queensland, St. Lucia, Brisbane, Queensland 4067, Australia
Get access

Abstract

Conventional and high resolution electron microscopy (HREM) were used to study the structure of {113} defects in high-dose oxygen implanted silicon. The defects are created with a density of 1011 cm−2 below the buried oxide layer in the substrate region. The HREM images of the {113} defects are similar to the ribbon-like defects in bulk silicon. It is proposed that there is a third possible structure of the defects, in addition to coesite and/or hexagonal structures. Portions of some defects exhibit the original cubic diamond structure which is twinned across {115} planes. The atomic model shows that the {115} interface is a coherent interface with alternating five- and seven-membered rings and no dangling bonds.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ommen, A. H. van, Koek, B. H., and Viegers, M. P. A., Appl. Phys. Lett. 49, 628 (1986).CrossRefGoogle Scholar
2De, A. Veirman, Yallup, K., Landuyt, J. Van, Maes, H. E., and Amelinckx, S., Inst. Phys. Conf. Ser. 87, 403 (1987).Google Scholar
3Krause, S. J., Jung, C. O., Ravi, T. S., Wilson, S., and Burke, D. E., in Silicon-on-Insulator and Buried Metals in Semiconductors, edited by Sturm, J. C., Chen, C. K., Pfeiffer, L., and Hemment, P. L. F. (Mater. Res. Soc. Symp. Proc. 107, Pittsburgh, PA, 1988), pp. 93104.Google Scholar
4Ravi, T. S., Jung, C. O., Burke, D. E., and Krause, S. J., in Proc. 47th Elect. Mic. Soc. Amer., edited by Bailey, G. W. (San Francisco Press, Inc., 1989), pp. 602603.Google Scholar
5Bourret, A., Inst. Phys. Conf. Ser. 87, 39 (1987).Google Scholar
6Bourret, A., Thibault-Desseaux, J., and Seidman, D. N., J. Appl. Phys. 55, 825 (1984).CrossRefGoogle Scholar
7Bender, H., Phys. Status Solidi (a) 86, 245 (1984).CrossRefGoogle Scholar
8Carpenter, R. W., Chen, Y. L., Kim, M. J., and Barry, J. C., Inst. Phys. Conf. Ser. 100, 543 (1989).Google Scholar
9Reiche, M. and Breitenstein, O., Phys. Status Solidi (a) 101, K97 (1987).CrossRefGoogle Scholar
10Bender, H. and Vanhellemont, J., Phys. Status Solidi (a) 107, 455 (1988).CrossRefGoogle Scholar
11Salisbury, I. G. and Loretto, M. H., Philos. Mag. A39, 317 (1979).CrossRefGoogle Scholar
12Tan, T. Y., Foil, H., and Hu, S. M., Philos. Mag. A44, 127 (1981).Google Scholar
13Pirouz, P., Chaim, R., and Dahmen, U., in Defects in Electronic Materials, edited by Stavola, M., Pearton, S. J., and Davies, G. (Mater. Res. Soc. Symp. Proc. 104, Pittsburgh, PA, 1988), p. 133.Google Scholar
14Pirouz, P., Dahmen, U., Westmacott, K. H., and Chaim, R., Acta Metall. 38, 329 (1990).CrossRefGoogle Scholar
15Wittkower, A. and Guerra, M., Nucl. Instrum. Methods B37/38, 512517 (1989).CrossRefGoogle Scholar
16Hetherington, C. J. D., Dahmen, U., Pirouz, P., and Westmacott, K. H., in Proc. 47th Elect. Mic. Soc. Amer., edited by Bailey, G. W. (San Francisco Press, Inc., 1989), pp. 132133.Google Scholar