Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T10:11:09.775Z Has data issue: false hasContentIssue false

Structure of Milled Galena (PbS) Particles as a Result of Grinding: Observations by Electron Microscopy

Published online by Cambridge University Press:  31 January 2011

P. Martinetto
Affiliation:
Centre de recherche et de restauration des musées de France, CNRS UMR 171, 6 rue des Pyramides,75041 Paris Cedex 01, France
J. Castaing
Affiliation:
Centre de recherche et de restauration des musées de France, CNRS UMR 171, 6 rue des Pyramides,75041 Paris Cedex 01, France
P. Walter
Affiliation:
Centre de recherche et de restauration des musées de France, CNRS UMR 171, 6 rue des Pyramides,75041 Paris Cedex 01, France
P. Penhoud
Affiliation:
Laboratoire d'étude des microstructures, CNRS UMR 104, ONERA, BP 72, 92322 Chatillon Cedex, France
P. Veyssière
Affiliation:
Laboratoire d'étude des microstructures, CNRS UMR 104, ONERA, BP 72, 92322 Chatillon Cedex, France
Get access

Abstract

We have examined galena powders with the aim of providing information about the preparation mode of such powders from ancient Egyptian burial objects. Two extreme conditions of milling have been used to prepare galena powders in the laboratory, and the resulting products have been examined using scanning electron microscopy and transmission electron microscopy (TEM). The microstructure of hand-crushed coarse particles consists mainly of dislocation tangles. Annealing at 300 °C promotes a substantial recovery of the dislocation structure with the formation of subboundaries. Energetic ball milling produces a large variety of particle sizes, from 10 nm to several micrometers, with grains containing very high dislocation densities. Although PbS is a soft plastic compound, its fragmentation occurs down to very small sizes along various fracture regimes like in many brittle materials. Comparisons are made between TEM observations and the data obtained from x-ray diffraction peak profile analysis.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Skrotzki, W., Tamm, R.. Oertel, C.G., Roseberg, J., and Brokmeier, H.G., J. Struct. Geol. 22, 1621 (2000).CrossRefGoogle Scholar
Walter, P., Martinetto, P., Tsoucaris, G., Bréniaux, R., Lefebvre, M.A., Richard, G., Talabot, J., and Dooryhée, E., Nature 397, 483 (1999).CrossRefGoogle Scholar
Martinetto, P., Anne, M., Dooryhée, E., Tsoucaris, G., and Walter, P., in Radiation in Art and Archaeology, edited by Creagh, D.C. and Bradley, D.A. (Elsevier, Amsterdam, The Netherlands, 2000), pp. 297316.Google Scholar
Martinetto, P., These de I’Université Joseph Fourier Grenoble I, Grenoble, France (2000).Google Scholar
Ungar, T., Martinetto, P., Ribarik, G., Dooryhe´e, E., Walter, P., and Anne, M., J Appl. Phys. 91, 2455 (2002).CrossRefGoogle Scholar
Foitzik, A., Skrotzki, W., and Haasen, P., Mater. Sci. Eng. A 132, 77 (1991).CrossRefGoogle Scholar
Bretheau, T., Castaing, J., Rabier, J., and Veyssiere, P., Adv. Phys. 28, 829 (1979).CrossRefGoogle Scholar
Foitzik, A., Skrotzki, W., and Haasen, P., Phys. Status Solidi A 121, 81 (1990).CrossRefGoogle Scholar
Enzo, S., Delogu, F., Fratini, R., Primavera, A., and Trovarelli, A., J Mater. Res. 15, 1538 (2000).CrossRefGoogle Scholar
Girot, T., Devaux, X., Be´guin-Collin, S., Le Cae¨r, G., and Mocellin, A, Philos. Mag. 81, 489 (2001).CrossRefGoogle Scholar
Yang, Z., Mao, C., Jun, Du, Michel, D., Champion, Y., Hage`ge, S., and Hÿtch, M. (to be published).Google Scholar
Breuer, D., Klimanek, P., and Pantleon, W., J. Appl. Crystallogr. 33, 1284 (2000).CrossRefGoogle Scholar
Louer, D., Auffredic, J.P., Langford, J.I., Ciosmak, D., and Niepce, J.C., J. Appl. Crystallogr. 16, 183 (1983).CrossRefGoogle Scholar
Langford, J.I., Louer, D., and Scardi, P., J. Appl. Crystallogr. 33, 964 (2000).CrossRefGoogle Scholar
Ungar, T., Ott, S., Sanders, P.G., Borbely, A., and Weertmann, J.R., Acta Mater. 46, 3693 (1998).CrossRefGoogle Scholar
Ungar, T., Gubicza, J., Ribarik, G., and Borbely, A., J. Appl. Crystallogr. 34, 298 (2001).CrossRefGoogle Scholar
Cheary, R.W., Dooryhee, E., Lynch, P., Armstrong, N., and Dligath, S., J. Appl. Crystallogr. 33, 1271 (2000).CrossRefGoogle Scholar
Guinier, A., X-ray Diffraction (W.H. Freeman, San Francisco, CA, 1963).Google Scholar
Redner, S., Statistical Models for the Fracture of Disordered Media, edited by Hermann, H.J. and Roux, S. (North Holland, Amsterdam, The Netherlands, 1990), Chap. 10, p. 321.CrossRefGoogle Scholar