Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T12:44:32.480Z Has data issue: false hasContentIssue false

Structure of amorphous Fe–Cr–P alloys prepared by electrodeposition

Published online by Cambridge University Press:  31 January 2011

Patrick K. Ng
Affiliation:
Physical Chemistry Department, General Motors Research Laboratories, Warren, Michigan 48090-9055
T. E. Mitchell
Affiliation:
Department of Metallurgy and Materials Science, Case Western Reserve University, Cleveland, Ohio 44106
Ivan E. Locci
Affiliation:
Department of Metallurgy and Materials Science, Case Western Reserve University, Cleveland, Ohio 44106
Augusto A. Ruiz
Affiliation:
Department of Metallurgy and Materials Science, Case Western Reserve University, Cleveland, Ohio 44106
Get access

Abstract

Iron-chromium-phosphorus (Fe–Cr–P) alloys were prepared by electrodeposition from an acidic citrate electrolyte using sodium hypophosphite as the source of phosphorus. These alloys form a passive oxide layer when exposed to air and are useful as protective coatings on steel. The current efficiency of the plating process reaches a maximum of 20% at a current density of 100 mA/cm2 where the alloy has 10% Cr and 19% P. X-ray diffraction patterns and TEM analysis show that the alloy is amorphous. TEM results also indicate that small oxide particles (5–20 nm) are dispersed in the amorphous structure. Besides Fe, Cr, and P, the alloys contain a low level of oxygen (4–7%) in the form of mixed iron and chromium oxides, as confirmed by AES analysis. When heated, the amorphous structure transforms into a mixture of Fe3P and Cr3P, along with α–Fe–Cr grains. This phase transformation occurs in the temperature range of 450–460 °C for alloys with 19% P.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Duwez, P., Willens, R.H., and Klement, W., J. Appl. Phys. 31, 1136 (1960).CrossRefGoogle Scholar
2Chen, H.S., Leamy, H. L., and Miller, C.E., Ann. Rev. Mater. Sci. 10, 363 (1980).CrossRefGoogle Scholar
3Diegle, R. B., Technology Transfer, 548 (1981).Google Scholar
4Duwez, P., J. Vac. Sci. Technol. B 1, 218 (1983).CrossRefGoogle Scholar
5Turnbull, D., Metall. Trans. B 12B, 217 (1981).CrossRefGoogle Scholar
6Chaudhari, P., Giessen, B. C., and Turnbull, D., Scientific American 242, 98 (1980).CrossRefGoogle Scholar
7Johnson, W. L., Progr. Mater. Sci. 30, 81 (1986).CrossRefGoogle Scholar
8Turnbull, D. and Polk, D. E., J. Non-Crystalline Solids 8-10, 19 (1972).CrossRefGoogle Scholar
9Naka, M., Hashimoto, K., Inove, A., and Masumoto, T., J. Non-Crystalline Solids 31, 347 (1979).CrossRefGoogle Scholar
10Naka, M., Hashimoto, K., and Masumoto, T., ibid., 31, 355 (1979).Google Scholar
11Hashimoto, K., Osada, K., Masumoto, T., and Shimodaira, S., Corr. Sci. 16, 71 (1976).CrossRefGoogle Scholar
12Asami, K., Naka, M., Hashimoto, K., and Masumoto, T., J. Electrochem. Soc. 127, 2130 (1980).CrossRefGoogle Scholar
13Feng, L. Q. and Shen, M. X., 8th Int. Cong, on Metallic Corrosion, V. I, 1121 (1981).Google Scholar
14Furuya, H., Hasegawa, N., Watanabe, T., and Tanaba, Y., Proc. 4th Int. Conf. on Rapidly Quenched Metals (1981), V. I, edited by Masumoto, T. and Suzuki, K., The Japan Institute of Metals, 93, 1982.Google Scholar
15Freitag, W. O., Mathias, J. S., and DiGuilio, G., J. Electrochem. Soc. 111, 35 (1964).CrossRefGoogle Scholar
16Blakeslee, M.C., Olsen, J.D., and Romankiw, L.T., U.S. Patent 4,440,609, Apr. 3, 1984.Google Scholar
17McCormick, L.D., Wheeler, N.S., Molock, C. R., and Chien, C. L., J. Electrochem. Soc. 131, 530 (1984).CrossRefGoogle Scholar
18Wang, R. and Merz, M.D., Corrosion 40, 272 (1984).CrossRefGoogle Scholar
19Lee, N.L. and Schulz, R., J. Mater. Res. 3 (5), 862 (1988).CrossRefGoogle Scholar
20Chance, R.L. and Walker, M. S. (private communication).Google Scholar
21Grant, W. A., Ali, A., Chadderton, L. T., Grundy, P. J., and Johnson, E., Rapidly Quenched Metals II, edited by Cantor, B., 1, 63 (1978).Google Scholar
22Ashworth, V., Baxter, D., Grant, W. A., and Proctor, R. P. M., Corr. Sci. 16, 775 (1976).Google Scholar
23Anthony, T. R. and Cline, H. E., J. Appl. Phys. 49, 1248 (1978).CrossRefGoogle Scholar
24Ng, P. K. and Paluch, R. F., “Electrodeposition of Iron-Chromium-Phosphorus Amorphous Alloys,” Extended Abstracts 85-2, p. 328, The Electrochemical Society Meeting at Las Vegas, NV, Oct. 13-18, 1985.Google Scholar
25Yensen, T.D., Trans. Am. Inst. Elect. Eng. 43, 145 (1924).CrossRefGoogle Scholar
26Mukasa, K. and Maeda, M., Phys. Stat. Sol. 57A, K93 (1980).CrossRefGoogle Scholar
27Pittermann, U. and Ripper, S., Phys. Stat. Sol. 93A. 131 (1986).CrossRefGoogle Scholar
28“Powder Diffraction File,” International Center for Diffraction data, 1986.Google Scholar
29Vogel, R. and Kasten, G. W., Arch. Eisenhiittenw. 12, 387 (1939).Google Scholar