Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T12:59:57.775Z Has data issue: false hasContentIssue false

Structure, bonding, and growth at a metal–organic interface in the weak chemisorption regime: Perylene–Ag(111)

Published online by Cambridge University Press:  03 March 2011

M. Eremtchenko
Affiliation:
Institut für Physik und Zentrum für Mikro- und Nanotechnologien, Technische Universität Ilmenau, 98684 Ilmenau, Germany
D. Bauer
Affiliation:
Institut für Physik und Zentrum für Mikro- und Nanotechnologien, Technische Universität Ilmenau, 98684 Ilmenau, Germany
J.A. Schaefer
Affiliation:
Institut für Physik und Zentrum für Mikro- und Nanotechnologien, Technische Universität Ilmenau, 98684 Ilmenau, Germany
F.S. Tautz*
Affiliation:
School of Engineering and Science, International University Bremen, 28725 Bremen, Germany
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Organic semiconductors on single-crystalline metal surfaces are model systems for injection contacts in organic field-effect transistors (OFET) and light-emitting diodes. They allow us to classify possible metal–organic interaction scenarios and to elucidate general tendencies, which most likely will also be found at metal–organic interfaces in real devices. In this contribution, we report a comprehensive investigation of the interface of perylene, a promising material for OFETs, with the close-packed noble metal surface Ag(111), using high-resolution electron energy loss spectroscopy, low-energy electron diffraction, and scanning tunneling microscopy as surface analytical techniques. The most important findings are: In the monolayer, molecules are oriented flat and form an incommensurate, most probably fluid overlayer. The molecules interact electronically with the substrate and become weakly metallic. Scanning tunneling microscopy reveals a propensity of perylene molecules toward a specific adsorption site on Ag(111), if the influence of intermolecular interactions is inhibited. Film growth at room temperature is similar to Stranski–Krastanov type. Finally, co-planar adsorption of perylene on Ag(111) is metastable, and annealing the monolayer at 420 K leads to a structural transformation of the film. The perylene–Ag(111) interface can therefore be classified as weakly interacting.

Type
Articles—Organic Electronics Special Section
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Katz, H.E.: Organic molecular solids as thin film transistor semiconductors. J. Mater. Chem. 7, 369 (1997).Google Scholar
2.Horowitz, G.: Organic field-effect transistors. Adv. Mater. 10, 365 (1998).3.0.CO;2-U>CrossRefGoogle Scholar
3.Dodabalapur, A.: Organic light-emitting diodes. Solid State Commun. 102, 259 (1997).CrossRefGoogle Scholar
4.Dimitrakopoulos, C.D. and Malenfant, P.R.L.: Organic Thin Film Transistors for Large Area Electronics. Adv. Mater. 14, 99 (2002).Google Scholar
5.Karl, N. Charge Carrier Mobility in Organic Molecular Crystals, in Organic Electronic Materials, edited by Farchioni, R. and Grosso, G. (Springer, Berlin, 2001) p. 283.CrossRefGoogle Scholar
6.Kim, S.H., Yang, Y.S., Lee, J.H., Lee, J.I., Chu, H.Y., Lee, H., Oh, J., Do, L.M. and Zyung, T.: Organic field-effect transistors using perylene. Opt. Mater. 21, 439 (2003).Google Scholar
7.Umbach, E., Glöckler, K. and Sokolowski, M.: Surface “architecture” with large organic molecules: interface order and epitaxy. Surf. Sci. 402, 20 (2000).Google Scholar
8.Glöckler, K., Seidel, C., Soukopp, A., Sokolowski, M., Umbach, E., Böhringer, M., Berndt, R. and Schneider, W-D.: Highly ordered structures and submolecular scanning tunneling microscopy contrast of PTCDA and DM-PBDCI monolayers on Ag(111) on Ag(110). Surf. Sci. 405, 1 (1998).CrossRefGoogle Scholar
9.Tautz, F.S., Sloboshanin, S., Schaefer, J.A., Scholz, R., Shklover, V., Sokolowski, M. and Umbach, E.: Vibrational properties of ultra-thin PTCDA films on Ag(110). Phys. Rev. B 61, 16933 (2000).Google Scholar
10.Tautz, F.S., Eremtchenko, M., Schaefer, J.A., Sokolowski, M., Shklover, V. and Umbach, E.: Strong electron-phonon-coupling at a metal/organic interface: PTCDA/Ag(111). Phys. Rev. B 65, 125405 (2002).Google Scholar
11.Tautz, F.S., Eremtchenko, M., Schaefer, J.A., Sokolowski, M., Shklover, V., Glöckler, K. and Umbach, E.: A comparison on the chemisorption behavior of PTCDA on different Ag surfaces. Surf. Sci. 502, 176 (2002).CrossRefGoogle Scholar
12.Eremtchenko, M., Schaefer, J.A. and Tautz, F.S.: Understanding and tuning the epitaxy of large aromatic adsorbates by molecular design. Nature 425, 602 (2003).CrossRefGoogle ScholarPubMed
13.Langhoff, S.R.: Theoretical Infrared Spectra for Polycyclinic Aromatic Hydrocarbon Neutrals, Cations, and Anions. J. Phys. Chem. 100, 2819 (1996).CrossRefGoogle Scholar
14.Hudgins, D.M. and Sandford, S.A.: Infrared Spectroscopy of Matrix Isolated Polycyclic Aromatic Hydrocarbons. 2. PAHs Containing Five or More Rings. J. Phys. Chem. A 102, 344 (1996).Google Scholar
15.Chen, Q., Rada, T., McDowall, A. and Richardson, N.V.: Epitaxial growth of a crystalline organic semiconductor: perylene/Cu(110). Chem. Mater. 14, 743 (2002).CrossRefGoogle Scholar
16.Wei, Z.Q., Wang, C., Zhu, C.F., Zhou, C.Q., Xu, B. and Bai, C.L.: Adlayer structures of pyrene and perylene on Cu(111): an in situ STM study. Surf. Sci. 478 L320 (2001).Google Scholar
17.Seidel, C., Ellerbrake, R., Gross, L. and Fuchs, H.: Structural transitions of perylene and coronene on silver and gold surfaces: a molecular-beam epitaxy LEED study. Phys. Rev. B 64, 195418 (2001).Google Scholar
18.Yannoulis, P., Dudde, R., Frank, K.H. and Koch, E.E.: Orientation of aromatic hydrocarbons on metal surfaces as determined by NEXAFS. Surf. Sci. 189–190, 519 (1987).CrossRefGoogle Scholar
19.Gross, L., Seidel, C. and Fuchs, H.: Organic monolayers with uniform domain orientation and reduced antiphase boundaries—MBE of perylene on Au(110). Org. Electr. 3, 1 (2002).Google Scholar
20.Lu, X., Mohamed, S.H., Ngaruiya, J.M., Wuttig, M. and Michely, T.: Modifying the growth of organic thin films by a self-assembled monolayer. J. Appl. Phys. 93, 4852 (2003).Google Scholar
21.Unwin, P.J. and Jones, T.S.: Growth of ordered perylene thin films on GaAs(100) and InAs(111)A. Proceedings of the 7th International Conference on Nanometre-scale Science and Technology and 21st European Conference on Surface Science. Lund University, Lund, Sweden, 2002.CrossRefGoogle Scholar
22.Chkoda, L., Schneider, M., Shklover, V., Kilian, L., Sokolowski, M., Heske, C. and Umbach, E.: Chem. Phys. Lett. 371, 548 (2003).Google Scholar
23.Krause, B., Duerr, A.C., Ritley, K., Schreiber, F., Dosch, H. and Smilgies, D.: Structure and growth morphology of an archetypal system for organic epitaxy: PTCDA on Ag(111). Phys. Rev. B 66, 235404 (2002).CrossRefGoogle Scholar
24.Eremtchenko, M., Bauer, D., Schaefer, J.A. and Tautz, F.S.: Polycyclic aromates on close-packed metal surfaces: functionalization, molecular chemisorption, and organic epitaxy. New Journal of Physics 6, 4 (2004).CrossRefGoogle Scholar
25.Shklover, V., Tautz, F.S., Scholz, R., Sloboshanin, S., Sokolowski, M., Schaefer, J.A. and Umbach, E.: Differences in vibronic and electronic excitations of PTCDA on Ag(111) and Ag(110). Surf. Sci. 454, 60 (2000).Google Scholar
26.Frisch, M.J., Trucks, G.W., and Schlegel, H.B. et al. Gaussian 98 (Gaussian Inc., Pittsburgh, PA, 1998).Google Scholar
27.Sander, L.C. and Wise, S.A.: National Institute of Standards and Technology (USA), Polycyclic Aromatic Hydrocarbon Structure Index, NIST Special Publication SP922, 1997. Available at http://ois.nist.gov/pah/.Google Scholar
28.Böhringer, M., Schneider, W-D. and Berndt, R.: Scanning tunneling microscope-induced molecular motion and its effect on the image formation. Surf. Sci. 408, 72 (1998).Google Scholar
29.Li, J., Berndt, R. and Schneider, W-D.: Tip-Assisted Diffusion on Ag(110) in Scanning Tunneling Microscopy. Phys. Rev. Lett. 76, 1888 (1996).Google Scholar
30.Böhringer, M., Schneider, W-D., Glöckler, K., Umbach, E. and Berndt, R.: Adsorption site determination of PTCDA on Ag(110) by manipulation of adatoms. Surf. Sci. Lett. 419 L95 (1998).CrossRefGoogle Scholar
31.Bartels, L., Meyer, G. and Rieder, K-H.: Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope tip. Phys. Rev. Lett. 79, 697 (1997).CrossRefGoogle Scholar