Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T17:53:39.298Z Has data issue: false hasContentIssue false

The structure and property characteristics of amorphous/nanocrystalline silicon produced by ball milling

Published online by Cambridge University Press:  03 March 2011

T.D. Shen
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907
C.C. Koch
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907
T.L. McCormick
Affiliation:
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202
R.J. Nemanich
Affiliation:
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202
J.Y. Huang
Affiliation:
Laboratory of Atomic Imaging of Solids, Institute of Metal Research, Academia Sinica, 72 Wenhua Road, Shenyang 110015, People's Republic of China
J.G. Huang
Affiliation:
Laboratory of High Tc Superconductivity, Institute of Metal Research, Academia Sinica, 72 Wenhua Road, Shenyang 110015, People's Republic of China
Get access

Abstract

The structural transformation of polycrystalline Si induced by high energy ball milling has been studied. The structure and property characteristics of the milled powder have been investigated by x-ray diffraction, scanning electron microscopy, high-resolution electron microscopy, differential scanning calorimetry, Raman scattering, and infrared absorption spectroscopy. Two phase amorphous and nanocrystalline Si has been produced by ball milling of polycrystalline elemental Si. The nanocrystalline components contain some defects such as dislocations, twins, and stacking faults which are typical of defects existing in conventional coarse-grained polycrystalline materials. The volume fraction of amorphous Si is about 15% while the average size of nanocrystalline grains is about 8 nm. Amorphous elemental Si without combined oxygen can be obtained by ball milling. The distribution of amorphous Si and the size of nanocrystalline Si crystallites is not homogeneous in the milled powder. The amorphous Si formed is concentrated near the surface of milled particles while the grain size of nanocrystalline Si ranges from 3 to 20 nm. Structurally, the amorphous silicon component prepared by ball milling is similar to that obtained by ion implantation or chemical vapor deposition. The amorphous Si formed exhibits a crystallization temperature of about 660 °C at a heating rate of 40 K/min and crystallization activation energy of about 268 kJ/mol. Two possible amorphization mechanisms, i.e., pressure-induced amorphization and crystallite-refinement-induced amorphization, are proposed for the amorphization of Si induced by ball milling.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Johnson, W. L., Prog. Mater. Sci. 30, 81 (1986).CrossRefGoogle Scholar
2Schwarz, R. B. and Koch, C. C., Appl. Phys. Lett. 49, 146 (1986).CrossRefGoogle Scholar
3Koch, C. C., Nanostructured Mater. 2, 109 (1993).CrossRefGoogle Scholar
4Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
5Siegel, R. W., Annu. Rev. Mater. Sci. 21, 559 (1991).CrossRefGoogle Scholar
6Eckert, J., Holzer, J. C., Krill, C. E. III, and Johnson, W. L., J. Mater. Res. 7, 1751 (1992).CrossRefGoogle Scholar
7Hamakawa, Y., in Materials Issues in Microcrystalline Semiconductors, edited by Fauchet, P. M., Tanaka, K., and Tsai, C. C. (Mater. Res. Soc. Symp. Proc. 164, Pittsburgh, PA, 1990), p. 291.Google Scholar
8Shen, T. D., Ge, W. Q., Wang, K. Y., Quan, M. X., Wang, J. T., and Wei, W. D., Nanostructured Mater, (in press).Google Scholar
9Gaffet, E. and Harmelin, M., J. Less-Comm. Met. 157, 201 (1990).CrossRefGoogle Scholar
10Bokhonov, B. B., Konstanchuk, I. G., and Boldyrev, V. V., J. Alloy Comp. 191, 239 (1993).CrossRefGoogle Scholar
11Gaffet, E., Mater. Sci. Eng. A 136, 161 (1991).CrossRefGoogle Scholar
12Thomas, G. J., Siegel, R. W., and Eastman, J. A., Scripta Metall. Mater. 24, 201 (1990).CrossRefGoogle Scholar
13Li, D. X., Ping, D. H., Ye, H. Q., Qin, X. Y., and Wu, X. J., Mater. Lett. 18, 29 (1993).CrossRefGoogle Scholar
14Guinier, A., X-ray Diffraction (Freeman, San Francisco, CA, 1963), p. 124.Google Scholar
15Poate, J. M., Nucl. Instrum. Methods 209/210, 211 (1983).CrossRefGoogle Scholar
16Nagasima, N. and Kubota, N., J. Vac. Sci. Technol. 14, 54 (1977).CrossRefGoogle Scholar
17Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M., and Jacobson, D. C., J. Appl. Phys. 57, 1795 (1985).CrossRefGoogle Scholar
18Roorda, S., Doom, S., Sinke, W. C., Scholte, P. M. L. O., and van Loenen, E., Phys. Rev. Lett. 62, 1880 (1989).CrossRefGoogle Scholar
19Fecht, H. J., Hellstern, E., Fu, Z., and Johnson, W. L., Metall. Trans. 21A, 2333 (1990).CrossRefGoogle Scholar
20Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M., and Jacobson, D. C., Appl. Phys. Lett. 42, 698 (1983).CrossRefGoogle Scholar
21Kissinger, H. E., J. Res. Natl. Bur. Stand. 57, 217 (1956).CrossRefGoogle Scholar
22Köster, U., Adv. Colloid Interface Sci. 10, 129 (1979).CrossRefGoogle Scholar
23Zellama, K., Germain, P., Squelard, S., Bourgoin, J. C., and Thomas, P. A., J. Appl. Phys. 50, 6995 (1979).CrossRefGoogle Scholar
24Iqbal, Z. and Veprek, S., J. Phys. C 15, 377 (1982).CrossRefGoogle Scholar
25Smith, J. E. Jr., Brodsky, M. H., Crowder, B. L., Nathan, M. I., and Pinczuk, A., Phys. Rev. Lett. 26, 642 (1971).CrossRefGoogle Scholar
26Shuker, R. and Gammon, R. W., Phys. Rev. Lett. 25, 222 (1970).CrossRefGoogle Scholar
27Fauchet, P. M. and Campbell, I. H., CRC Grit. Rev. Solid State Mater. Sci. 14 (Suppl. 1), S79 (1988).CrossRefGoogle Scholar
28Nemanich, R. J., Buchler, E. C., Legrice, Y. M., Shroder, R. E., Parsons, G. N., Wang, C., Lucovsky, G., and Boyce, J. B., J. Non-Cryst. Solids 114, 813 (1989).CrossRefGoogle Scholar
29Nakamura, M., Mochizuki, Y., Usami, K., Itoh, Y., and Nozaki, T., Solid State Commun. 50, 1079 (1984).CrossRefGoogle Scholar
30Lin, I. J. and Nadiv, S., Mater. Sci. Eng. 39, 193 (1979).CrossRefGoogle Scholar
31Steinike, U., Muller, B., and Henning, H. P., Krist. Tech. 14, 1469 (1979).CrossRefGoogle Scholar
32Ponyatovsky, E. G. and Barkalov, O. I., Mater. Sci. Rep. 8, 147 (1992).CrossRefGoogle Scholar
33Maurice, D. R. and Courtney, T. H., Metall. Trans. 21A, 289 (1990).CrossRefGoogle Scholar
34Clarke, D. R., Kroll, M. C., Kirchner, P. D., Cook, R. F., and Hockey, B. J., Phys. Rev. Lett. 60, 2156 (1988).CrossRefGoogle Scholar
35Aptekar, L. I., Sov. Phys. Dokl. 24, 993 (1979).Google Scholar
36Groza, J. R., J. Mater. Eng. Perf. 2, 283 (1993).CrossRefGoogle Scholar
37Garret, E., Malhouroux-Gaffet, N., Abdellaoui, M., and Malchère, A., La revue de Métallurgie-CIT/Science et Génie des Matériaux Mai, 757 (1994).Google Scholar
38Veprek, S., Iqbal, Z., and Sarott, F-A., Philos. Mag. B 45, 137 (1982).CrossRefGoogle Scholar
39Phillpot, S. R. and Wolf, D., Philos. Mag. A 60, 543 (1989).CrossRefGoogle Scholar
40Hilliard, J. E., in Stereology, edited by Elias, H. (Springer-Verlag, New York, 1967), p. 211.CrossRefGoogle Scholar
41Polk, D. E. and Boudreaux, D. S., Phys. Rev. Lett. 31, 92 (1973).CrossRefGoogle Scholar
42Wooten, F. and Weaire, D., in Solid State Physics, edited by Turnbull, D. and Ehrenreich, H. (Academic, New York, 1987), Vol. 40, p. 2.Google Scholar
43Beeman, D., Tsu, R., and Thorpe, M. F., Phys. Rev. B 32, 874 (1985).CrossRefGoogle Scholar
44Bean, J. C., Leamy, H. J., Poate, J. M., Rozgonyi, G. A., van der Ziel, J. P., and Celler, G.K., J. Appl. Phys. 50, 881 (1979).CrossRefGoogle Scholar
45Sinke, W., Warabisako, T., Miyao, M., Tokuyama, T., Roorda, S., and Saris, F. W., J. Non-Cryst. Solids 99, 308 (1988).CrossRefGoogle Scholar
46Veprek, S., Sarott, F-A., and Iqbal, Z., Phys. Rev. B 36, 3344 (1987).CrossRefGoogle Scholar