Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T12:40:31.300Z Has data issue: false hasContentIssue false

Structure and Oxidation Patterns of Carbon Nanotubes

Published online by Cambridge University Press:  31 January 2011

N. Yao*
Affiliation:
Princeton Materials Institute, Princeton University, Princeton, New Jersey 08540
V. Lordi
Affiliation:
Princeton Materials Institute, Princeton University, Princeton, New Jersey 08540
S. X. C. Ma
Affiliation:
Princeton Materials Institute, Princeton University, Princeton, New Jersey 08540
E. Dujardin
Affiliation:
NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540
A. Krishnan
Affiliation:
NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540
M. M. J. Treacy
Affiliation:
NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540
T. W. Ebbesen
Affiliation:
NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540
*
a)Corresponding author. e-mail: [email protected]
Get access

Abstract

We discuss the oxidation of carbon nanotubes and how it is affected by structure and geometry. While graphite is known to oxidize primarily at defects to create etch pits, nanotubes have additional structural features such as high curvature, helicity, and contain five and seven membered rings which modify the initiation and propagation of oxidation. Oxidation does not necessarily start at the tip of the tubes, and there are pronounced differential oxidation rates between layers which depend on the helicity of the individual shells.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ajayan, P. M. and Ebbesen, T. W., Rep. Prog. Phys. 60, 1025 (1997).CrossRefGoogle Scholar
2Ebbesen, T. W., Carbon Nanotubes(CRC Press, Boca Raton, FL, 1997).Google Scholar
3Overney, G., Zhong, W., and Tománek, D., Z. Phys. D27, 93 (1993).Google Scholar
4Ruoff, R. S., Tersoff, J., Lorents, D., Subramoney, S., and Chan, B., Nature (London) 364, 524 (1993).Google Scholar
5Yakobson, B. I., Brabec, C. J., and Bernholc, J., Phys. Rev. Lett. 76, 2511 (1996).CrossRefGoogle Scholar
6Treacy, M. M. J., Ebbesen, T. W., Gibson, J. M., Nature (London) 381, 678 (1996).Google Scholar
7Yao, N. and Lordi, V., J. Appl. Phys. 84 (1998, in press); Lordi, V. and N. Yao, J. Chem. Phys. 109 (1998, in press).Google Scholar
8Ebbesen, T. W., Lezec, H. J., Hiura, H., Bennett, J. W., Ghaemi, H. F., and Thio, T., Nature (London) 382, 54 (1996).CrossRefGoogle Scholar
9Tans, S. J., Devoret, M. H., Dai, H. J., Thess, A., Smalley, R. E., Geerligs, L. J., and Dekker, C., Nature (London) 386, 474 (1997).CrossRefGoogle Scholar
10Hamada, N., Sawada, S., and Oshiyama, A., Phys. Rev. Lett. 68(10), 1579 (1992).CrossRefGoogle Scholar
11Kouwenhoven, L., Science 275, 1896 (1997).CrossRefGoogle Scholar
12Rinzler, A. G., Hafner, J. H., Nikolaev, P., Lou, L., Kim, S. G., Tománek, D., Nordlander, P., Colbert, D. T., and Smalley, R. E., Science 269, 1550 (1995).CrossRefGoogle Scholar
13De Heer, W. A., Châtelain, A., and Ugarte, D., Science 270, 1179 (1995).CrossRefGoogle Scholar
14Ugarte, D., Châtelain, A., and de Heer, W. A., Science 274, 1897 (1996).CrossRefGoogle Scholar
15Ajayan, P. M. and Iijima, S., Nature (London) 361, 333 (1993); P. M. Ajayan, T. W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, and H. Hiura, Nature (London) 362, 522 (1993).CrossRefGoogle Scholar
16Carroll, D. L., Redlich, P., Ajayan, P. M., Charlier, J. C., Blase, X., De Vita, A., and Car, R., Phys. Rev. Lett. 78, 2811 (1997).CrossRefGoogle Scholar
17Thomas, J. M., in Chemistry and Physics of Carbon, edited by Walker, P. L., Jr. (Marcel Dekker, New York, 1966), Vol. 1, p. 121.Google Scholar
18Ebbesen, T. W. and Ajayan, P. M., Nature (London) 358, 220 (1992).CrossRefGoogle Scholar
19Tsang, S. C., Harris, P. J. F., and Green, M. L. H., Nature (London) 362, 520 (1993).CrossRefGoogle Scholar
20Ajayan, P. M., Ebbesen, T. W., Ichihashi, T., Iijima, S., Tanigaki, K., and Hiura, H., Nature (London) 362, 522 (1993).CrossRefGoogle Scholar
21Lordi, V. and Yao, N., Microscopy and Microanalysis 3 (2), 421 (1997).CrossRefGoogle Scholar
22Guo, T., Nikolaev, P., Thess, A., Colbert, D. T., and Smalley, R. E., Chem. Phys. Lett. 243, 49 (1995).CrossRefGoogle Scholar
23Ajayan, P. M., Ichihashi, T., and Iijima, S., Chem. Phys. Lett. 202, 384 (1993).CrossRefGoogle Scholar
24Iijima, S., Ichihashi, T., and Ando, Y., Nature (London) 356, 776 (1992).Google Scholar
25Haddon, R. C., Science 261, 1545 (1993).Google Scholar
26Ebbesen, T. W. and Takada, T., Carbon 33, 973 (1995).Google Scholar
27Liu, M. and Cowley, J. M., Carbon 32, 393 (1994); Liu, M. and Cowley, J. M., Ultramicroscopy 53, 333 (1994).CrossRefGoogle Scholar
28Ngo, T., Snyder, E. J., Tong, W. M., Williams, R. S., and Anderson, M. S., Surf. Sci. Lett. 314, L817 (1994).CrossRefGoogle Scholar
29You, H., Brown, N. M. D., and Al-Assadi, K. F., Surf. Sci. 284, 263 (1993).Google Scholar
30Amelinckx, S., Bernaerts, D., Zhang, X. B., Van Tendeloo, G., and Van Landuyt, J., Science 267, 1334 (1995).Google Scholar
31Dujardin, E., Krishnan, A., Treacy, M. M. J., and Ebbesen, T. W., Adv. Mater. 10, 611 (1998).3.0.CO;2-8>CrossRefGoogle Scholar
32Yao, N., Spinnler, G. E., Kemp, R. A., Guthrie, D. C., Cates, R. D., and Bolinger, C. M., Proc. 49th Annual Conference of EMSA,edited by Bailey, G. W. and Hall, E. L. (San Francisco Press, San Francisco, CA, 1991), p. 1028.Google Scholar
33Ebbesen, T. W., Ajayan, P. M., Hiura, H., and Tanigaki, K., Nature (London) 367, 519 (1994).Google Scholar