Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T12:15:10.063Z Has data issue: false hasContentIssue false

Structural modifications of Gd2Zr2-xTixO7 pyrochlore induced by swift heavy ions: Disordering and amorphization

Published online by Cambridge University Press:  31 January 2011

M. Lang
Affiliation:
Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109-1005; and Department of Materials Science & Engineering, University of Michigan, Ann Arbor, Michigan 48109-1005
F.X. Zhang
Affiliation:
Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109-1005; and Department of Materials Science & Engineering, University of Michigan, Ann Arbor, Michigan 48109-1005
R.C. Ewing*
Affiliation:
Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109-1005; and Department of Materials Science & Engineering, University of Michigan, Ann Arbor, Michigan 48109-1005
Jie Lian
Affiliation:
Department of Mechanical, Aerospace & Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180; and Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109-1005; and Department of Materials Science & Engineering, University of Michigan, Ann Arbor, Michigan 48109-1005
Christina Trautmann
Affiliation:
Gesellschaft für Schwerionenforschung (GSI), 64291 Darmstadt, Germany
Zhongwu Wang
Affiliation:
Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The isometric, pyrochlore structure type, A2B2O7, exhibits a wide variety of properties that find application in a large number of different technologies, from electrolytes in solid oxide fuel cells to actinide-bearing compositions that can be used as nuclear waste forms or inert matrix nuclear fuels. Swift xenon ions (1.43 GeV) have been used to systematically modify different compositions in the Gd2Zr2-xTixO7 binary at the nanoscale by radiation-induced phase transitions that include the crystalline-to-amorphous and order-disorder structural transformations. Synchrotron x-ray diffraction, Raman spectroscopy, and transmission electron microscopy provide a complete and consistent description of structural changes induced by the swift heavy ions and demonstrate that the response of pyrochlore depends strongly on chemical composition. The high and dense electronic energy deposition primarily results in amorphization of Ti-rich pyrochlore; whereas the formation of the fully disordered, defect-fluorite structure is the dominant process for Zr-rich pyrochlore.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Subramanian, M.A.Aravamudan, G. and Rao, G.V.S.: Oxide pyrochlores–A review. Prog. Solid State Chem. 15, 55 (1983).CrossRefGoogle Scholar
2Chakoumakos, B.C.: Systematics of the pyrochlore structure type, ideal A2B2X6Y. J. Solid State Chem. 53, 120 (1984)CrossRefGoogle Scholar
3Lian, J.Wang, L.M.Wang, S.X.Chen, J.Boatner, L.A. and Ewing, R.C.: Nanoscale manipulation of pyrochlore: New nanocomposite ionic conductors. Phys. Rev. Lett. 87, 145901 (2001)Google Scholar
4Lian, J.Helean, K.B.Kennedy, B.J.Wang, L.M.Navrotsky, A. and Ewing, R.C.: Effect of structure and thermodynamic stability on the response of lanthanide stannate pyrochlores to ion beam irradiation. J. Phys. Chem. B 110, 2343 (2006)CrossRefGoogle ScholarPubMed
5Sickafus, K.E.Minervini, L.Grimes, R.W.Valdez, J.A.Ishimaru, M.Li, F.McClellan, K.J. and Hartmann, T.: Radiation tolerance of complex oxides. Science 289, 748 (2000)Google Scholar
6Wuensch, B.J.Eberman, K.W.Heremans, C.Ku, E.M.Onnerud, P.Yeo, E.M.Haile, S.M.Stalick, J.K. and Jorgensen, J.D.: Connection between oxygenion conductivity of pyrochlore fuel-cell materials and structural change with composition and temperature. Solid State Ionics 129, 111 (2000)Google Scholar
7Wang, S.X.Wang, L.M.Ewing, R.C.Was, G.S. and Lumpkin, G.R.: Ion irradiation-induced phase transformation of pyrochlore and zirconolite. Nucl. Instrum. Methods Phys. Res., Sect. B 148, 704 (1999)Google Scholar
8Lian, J.Wang, L.Chen, J.Sun, K.Ewing, R.C.Farmer, J.M. and Boatner, L.A.: The order-disorder transition in ion-irradiated pyrochlore. Acta Mater. 51(5), 1493 (2003).CrossRefGoogle Scholar
9Kramer, S.A. and Tuller, H.L.: A novel titanate-based oxygen ion conductor: Gd2Ti2O7. Solid State Ionics 82, 15 (1995)CrossRefGoogle Scholar
10Kramer, S.A.Spears, M. and Tuller, H.L.: Conduction in titanate pyrochlores: Role of dopants. Solid State Ionics 72, 59 (1994)Google Scholar
11Williford, R.E.Weber, W.J.Devanathan, R. and Gale, J.D.: Effects of cation disorder on oxygen vacancy migration in Gd2Ti2O7. J. Electroceram. 3, 409 (1999)CrossRefGoogle Scholar
12Burggraaf, A.J.Dijk, T. Van, and Verkerk, M.J.: Structure and conductivity of pyrochlore and fluorite type solid solutions. Solid State Ionics 5, 519 (1981)CrossRefGoogle Scholar
13Goodenough, J.B.: Oxide-ion conductors by design. Nature 404, 821 (2000)CrossRefGoogle ScholarPubMed
14Ewing, R.C.Weber, W.J. and Lian, J.: Nuclear waste disposal–Pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and “minor” actinides. J. Appl. Phys. 95, 5949 (2004)CrossRefGoogle Scholar
15Weber, W.J. and Ewing, R.C.: Plutonium immobilization and radiation effects. Science 289, 2051 (2000)CrossRefGoogle ScholarPubMed
16Weber, W.J. and Ewing, R.C.: Radiation effects in crystalline oxide host phases for the immobilization of actinides, in Scientific Basis for Nuclear Waste Management XXV, edited by McGrail, B.P. and Cragnolino, G.A. (Mater. Res. Soc. Symp. Proc. 713, Warrendale, PA, 2002), p. 443.Google Scholar
17Helean, K.B.Navrotsky, A.Vance, E.R.Carter, M.L.Ebbinghaus, B.Krikorian, O.Lian, J.Wang, L.M. and Catalano, J.G.: Enthalpies of formation of Ce-pyrochlore, Ca0.93Ce1.00Ti2.035O7.00, U-pyrochlore, Ca1.46U4+0.23U6+0.46Ti1.85 O7.00 and Gd-pyrochlore, Gd2Ti2O7: Three materials relevant to the proposed waste form for excess weapons plutonium. J. Nucl. Mater. 303, 226 (2002)CrossRefGoogle Scholar
18Digeos, A.A.Valdez, J.A.Sickafus, K.E.Atio, S.Grimes, R.W. and Boccaccini, A.R.: Glass matrix/pyrochlore phase composites for nuclear wastes encapsulation. J. Mater. Sci. 38, 1597 (2003)Google Scholar
19Raison, P.E. and Haire, R.G.: Zirconia-based materials for transmutation of americium and curium: Cubic stabilized zirconia and zirconium oxide pyrochlores. Prog. Nucl. Energy 38, 251 (2001)CrossRefGoogle Scholar
20Shoup, S.S.Bamberger, C.E. and Haire, R.G.: Novel plutonium titanate compounds and solid solutions Pu2Ti2O7-Ln2Ti2O7: Relevance to nuclear waste disposal. J. Am. Ceram. Soc. 79, 1489 (1996)CrossRefGoogle Scholar
21Begg, B.D.Hess, N.J.McCready, D.E.Thevuthasan, S. and Weber, W.J.: Heavy-ion irradiation effects in Gd2(Ti2-xZrx)O7 pyrochlores. J. Nucl. Mater. 289, 188 (2001)CrossRefGoogle Scholar
22Chakoumakos, B.C. and Ewing, R.C.: Crystal chemical constraints on the formation of actinide pyrochlores, in Scientific Basis for Nuclear Waste Management VIII, edited by Jantzen, C.M.Stone, J.A. and Ewing, R.C. (Mater. Res. Soc. Symp. Proc. 44, Pittsburgh, PA, 1985), p. 641.Google Scholar
23Weber, W.J.Wald, J.W. and Matzke, H.: Self-radiation damage in Gd2Ti2O7. Mater. Lett. 3, 173 (1985)CrossRefGoogle Scholar
24Wang, S.X.Begg, B.D.Wang, L.M.Ewing, R.C.Weber, W.J. and Kutty, K.V.G.: Radiation stability of gadolinium zirconate: A waste form for plutonium disposition. J. Mater. Res. 14, 4470 (1999)CrossRefGoogle Scholar
25Begg, B.D.Hess, N.J.Weber, W.J.Devanathan, R.Icenhower, J.P.Thevuthasan, S. and McGrail, B.P.: Heavy-ion irradiation effects on structures and acid dissolutions of pyrochlores. J. Nucl. Mater. 288, 208 (2001)CrossRefGoogle Scholar
26Lian, J.Wang, L.M.Ewing, R.C. and Boatner, L.A.: Ion beam implantation and cross-sectional TEM studies of lanthanide titanate pyrochlore single crystals. Nucl. Instrum. Methods Phys. Res., Sect. B 241, 365 (2005)Google Scholar
27Lian, J.Zu, X.T.Kutty, K.V.G.Chen, J.Wang, L.M. and Ewing, R.C.: Ion-irradiation-induced amorphization of La2Zr2O7 pyrochlore. Phys. Rev. B 66, 054108 (2002)Google Scholar
28Lian, J.Chen, J.Wang, L.M.Ewing, R.C.Farmer, J.M.Boatner, L.A. and Helean, K.B.: Radiation-induced amorphization of rare-earth titanate pyrochlores. Phys. Rev. B 68, 134107 (2003)Google Scholar
29Lian, J.Ewing, R.C.Wang, L.M. and Helean, K.B.: Ion-beam irradiation of Gd2Sn2O7 and Gd2Hf2O7 pyrochlore: Bond-type effect. J. Mater. Res. 19, 1575 (2004)Google Scholar
30Lian, J.Wang, L.M.Haire, R.G.Helean, K.B. and Ewing, R.C.: Ion beam irradiation in La2Zr2O7–Ce2Zr2O7 pyrochlore. Nucl. Instrum. Methods Phys. Res., Sect. B 218, 236 (2004)CrossRefGoogle Scholar
31Patel, M.K.Vijayakumar, V.Avasthi, D.K.Kailas, S.Pivin, J.C.Grover, V.Mandal, B.P. and Tyagi, A.K.: Effect of swift heavy ion irradiation in pyrochlores. Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2898 (2008)Google Scholar
32Sattonnay, G.Moll, S.Thomé, L., Legros, C.Herbst-Ghysel, M., Garrido, F.Costantini, J-M. and Trautmann, C.: Heavy-ion irradiation of pyrochlore oxides: Comparison between low and high energy regimes. Nucl. Instrum. Methods Phys. Res., Sect. B 266, 3043 (2008)CrossRefGoogle Scholar
33Wang, S.X.Wang, L.M.Ewing, R.C. and Kutty, K.V.G.: Ion irradiation effects for two pyrochlore compositions: Gd2Ti2O7 and Gd2Zr2O7, in Microstructural Processes in Irradiated Materials, edited by Zinkle, S.J.Lucas, G.E.Ewing, R.C. and Williams, J.S. (Mater. Res. Soc. Symp. Proc. 540, Warrendale, PA, 1999), p. 355.Google Scholar
34Panero, W.R.Stixrude, L. and Ewing, R.C.: First-principles calculation of defect-formation energies in the Y2(Ti,Sn,Zr)2O7 pyrochlore. Phys. Rev. B 70, 054110 (2004)Google Scholar
35Wang, J.W.Zhang, F.X.Lian, J.Ewing, R.C. and Becker, U. Energetics of defect formation in Gd2Ti2O7 and Gd2Zr2O7 pyrochlore at high pressure. Phys. Rev. B (2009, under review).Google Scholar
36Li, N.Xiao, H.Y.Zu, X.T.Wang, L.M.Ewing, R.C.Lian, J. and Gao, F.: First-principles study of electronic properties of La2Hf2O7 and Gd2Hf2O7. J. Appl. Phys. 102(6), 063704 (2007).CrossRefGoogle Scholar
37Chen, Z.J.Xiao, H.Y.Zu, Y.T.Wang, L.M.Gao, F.Lian, J. and Ewing, R.C.: Structural and bonding properties of stannate pyrochlores: A density-functional theory investigation. Comput. Mater. Sci. 42, 653 (2008)Google Scholar
39Hammersley, A.P.: Fit 2D (ESRF, Grenoble, France, 1998).Google Scholar
40Rodriguez-Carvajal, J.: Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55 (1993)Google Scholar
41Hess, N.J.Begg, B.D.Conradson, S.D.McCready, D.E.Gassmann, P.L. and Weber, W.J.: Spectroscopic investigations of the structural phase transition in Gd2(Ti1-yZry)2O7 pyrochlores. J. Phys. Chem. B 106, 4663 (2002)Google Scholar
42García-Martín, S., Alario-Franco, M.A., Ehrenberg, H.J. Rodríguez-Carvajal, and U. Amador: Crystal structure and microstructure of some La2/3-xLi3xTiO3 oxides: An example of the complementary use of electron diffraction and microscopy and synchrotron x-ray diffraction to study complex materials. J. Am. Chem. Soc. 126, 3587 (2004)Google Scholar
43Weber, W.J.Hess, N.J. and Maupin, G.D.: Amorphization in Gd2Ti2O7 CaZrTi2O7 irradiated with 3 MeV argon ions. Nucl. Instrum. Methods Phys. Res., Sect. B 65, 102 (1992)CrossRefGoogle Scholar
44Weber, W.J. and Hess, N.J.: Ion beam modification of Gd2Ti2O7. Nucl. Instrum. Methods Phys. Res., Sect. B 80/81, 1245 (1993)Google Scholar
45Zhang, F.X.Manoun, B.Saxena, S.K. and Zha, C.S.: Structure change of pyrochlore Sm2Ti2O7 at high pressures. Appl. Phys. Lett. 86, 181906 (2005)Google Scholar
46Lumpkin, G.R. and Ewing, R.C.: Alpha-decay damage in minerals of the pyrochlore group. Phys. Chem. Miner. 16, 2 (1988)Google Scholar
47Lian, J.Wang, L.M.Sun, K. and Ewing, R.C.: In situ TEM of radiation effects in complex ceramics. Microsc. Res. Tech. (2009, in press).Google Scholar
48Meftah, A.Brisard, F.Costantini, J.M.Hage-Ali, M., Stoquert, J.P.Studer, F. and Toulemonde, M.: Swift heavy ions in magnetic insulators: A damage-cross-section velocity effect. Phys. Rev. B 48, 920 (1993)Google Scholar
49Weber, W.J.: Models and mechanisms of irradiation-induced amorphization in ceramics. Nucl. Instrum. Methods Phys. Res., Sect. B 166–167, 98 (2000)CrossRefGoogle Scholar