Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T18:03:52.791Z Has data issue: false hasContentIssue false

Structural characterization of amorphous ceramics in the system Si–B–N–(C) by means of transmission electron microscopy methods

Published online by Cambridge University Press:  31 January 2011

D. Heinemann
Affiliation:
Institut für Anorganische Chemie und Sonderforschungsbereich 408, Universität Bonn, Römerstraβe 164, D-53117 Bonn, Germany
W. Assenmacher
Affiliation:
Institut für Anorganische Chemie und Sonderforschungsbereich 408, Universität Bonn, Römerstraβe 164, D-53117 Bonn, Germany
W. Mader
Affiliation:
Institut für Anorganische Chemie und Sonderforschungsbereich 408, Universität Bonn, Römerstraβe 164, D-53117 Bonn, Germany
M. Kroschel
Affiliation:
Institut für Anorganische Chemie und Sonderforschungsbereich 408, Universität Bonn, Römerstraβe 164, D-53117 Bonn, Germany
M. Jansen
Affiliation:
Institut für Anorganische Chemie und Sonderforschungsbereich 408, Universität Bonn, Römerstraβe 164, D-53117 Bonn, Germany
Get access

Abstract

Amorphous ceramics with the chemical composition Si3B3N7 and SiBN3C were produced from single-source molecular precursors by polymerization and pyrolysis. The powder and fiber materials were investigated by means of energy filtering transmission electron microscopy. The intensity of elastically scattered electrons is recorded to calculate the pair distribution function of these ceramics. In the pair distribution function of Si3B3N7 three significant maxima at 0.144, 0.172, and 0.291 nm are clearly resolved and are assigned to the pair distances B–N, Si–N, and Si–Si (N–N), respectively, by comparison to crystalline materials. The predominant structural units of the ceramic are trigonal planar BN3 and tetrahedral SiN4 groups, which are close to their regular symmetry. The overall pair distribution function of SiBN3C is very similar to that of Si3B3N7; however, the maxima are broadened due to the incorporation of carbon into the network. High-resolution mapping of the elements Si, B, N, and C with electron spectroscopic imaging reveals a homogeneous distribution on a subnanometer scale without precipitation or separation of, for example, carbon-rich clusters. Similarly, elemental mapping of Si3B3N7 reveals a random distribution of the elements Si, B, and N at the same scale. Both new ceramics consist of an amorphous network with bonds and coordinations as preformed in the precursor.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Winter, G., Verbeek, W., and Mansmann, M., U.S. Patent No. 3 892 583 (1975);Google Scholar
Yajima, S., Okamura, K., Hayashi, J., and Omori, M., J. Am. Ceram. Soc. 59, 324 (1975);CrossRefGoogle Scholar
Seyferth, D., Wiseman, G.H., and Prud'homme, C., J. Am. Ceram. Soc. 66, C13 (1983).CrossRefGoogle Scholar
2.Seyferth, D., Plenio, H., J. Am. Ceram. Soc. 73, 2131 (1990).CrossRefGoogle Scholar
3.Baldus, H-P., Wagner, O., and Jansen, M., in Chemical Processes in Inorganic Materials: Metal and Semiconductor Clusters and Colloids, edited by Persans, P.D., Bradley, J.S., Chianelli, R.R., and Schmid, G. (Mater. Res. Soc. Symp. Proc. 272, Pittsburgh, PA, 1992), p. 821.Google Scholar
4.Baldus, H-P., Jansen, M., and Wagner, O., Key Eng. Mater. 88–91, 75 (1994).Google Scholar
5.Jansen, M., Baldus, H-P., and Wagner, O., (Bayer AG), EP 0502399 A2 (1992) [Chem. Abstr. 117, 256745 (1992)].Google Scholar
6.Baldus, H-P. and Jansen, M., Angew. Chem. 109, 338 (1997).CrossRefGoogle Scholar
7.Heinemann, D. and Mader, W., Ultramicroscopy 74, 113 (1998).CrossRefGoogle Scholar
8.Freitag, B. and Mader, W., J. Microsc. (in press).Google Scholar
9.Hofer, F., Warbichler, P., and Grogger, W., Ultramicroscopy 59, 15 (1995).CrossRefGoogle Scholar
10.Mann, S., Geilenberg, D., Broekaert, J.A.C, and Jansen, M., J. Anal. Atom. Spec. 12, 975 (1997).CrossRefGoogle Scholar
11.Strecker, A., Salzberger, U., and Mayer, J., Prakt. Metallogr. 30, 10 (1993).Google Scholar
12.Babbel, K.H., Kohler, D., Schulz, S., and Mader, W., Optik 107 (Suppl. 7), 122 (1997).Google Scholar
13.Krivanek, O.L., Gubbens, A.J., Delby, N., and Meyer, C.E., Micros. Microanal. Microstruc. 3, 187 (1992).CrossRefGoogle Scholar
14.Zweck, J., Tewes, M., and Hoffmann, H., J. Phys. Condens. Mater. C6, 835 (1994).Google Scholar
15.Reimer, L., Energy-Filtering Transmission Electron Microscopy, Optical Sciences Vol. 71 (Springer-Verlag, Berlin 1995) pp. 348400.CrossRefGoogle Scholar
16.Hagenmayer, R., Müller, U., and Jansen, M. (in press).Google Scholar
17.Müller, U., Hoffbauer, W., and Jansen, M. (unpublished).Google Scholar
18.Jalowiecki, A., Bill, J., Aldinger, F., and Mayer, J., Composites Part A 27A, 717 (1996).CrossRefGoogle Scholar
19.Mayer, J., Szabó, D.V., Rühle, M., Seher, M., and Riedel, R., J. Eur. Ceram. Soc. 15, 717 (1995).CrossRefGoogle Scholar
20.Jalowiecki, A., Bill, J., Mayer, J., and Aldinger, F., in Proceedings of Euromat '95 Vol. G (Padua, Italy, 1995), pp. 265270.Google Scholar