Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T07:29:53.566Z Has data issue: false hasContentIssue false

Structural changes in GaAs induced by ultrafast (fs) laser pulses

Published online by Cambridge University Press:  31 January 2011

L. Nánai
Affiliation:
Department of Experimental Physics, József Attila University, H-6720 Szeged, Dóm tér 9, Hungary
R. Vajtai
Affiliation:
Department of Experimental Physics, József Attila University, H-6720 Szeged, Dóm tér 9, Hungary
Cs. Beleznai
Affiliation:
Department of Experimental Physics, József Attila University, H-6720 Szeged, Dóm tér 9, Hungary
J. Remes
Affiliation:
Microelectronics and Materials Physics Laboratories, University of Oulu, SF-90570 Oulu, Finland
S. Leppävuori
Affiliation:
Microelectronics and Materials Physics Laboratories, University of Oulu, SF-90570 Oulu, Finland
Thomas F. George
Affiliation:
Office of the Chancellor/Departments of Chemistry and Physics & Astronomy, University of Wisconsin–Stevens Point, Stevens Point, Wisconsin 54481-3897
Get access

Extract

Ultrafast changes in the crystal structure of GaAs induced by intense femtosecond laser pulses are detected and investigated. Atomic force microscopy and Raman microprobe analysis of the laser-treated area show centrosymmetric (disordered) features which are different from the original zinc-blend structure of the GaAs lattice. The frozen-in structure shows evidence for a special heat transfer from the laser-induced crater to the boundary, namely the heat has been transferred ballistically by a high-density electron-hole plasma.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For a review, see Pulsed Laser Processing of Semiconductors: Semiconductors and Semimetals, edited by Wood, R. F., White, C. W., and Young, R. T. (Academic, Orlando, FL, 1984), Vol. 23.Google Scholar
2.Kurz, H. and Bloembergen, N., in Energy Beam-Solid Interactions and Transient Thermal Processing/1984, edited by Biegelsen, D. K., Rozgonyi, G. A., and Shank, C. V. (Mater. Res. Soc. Symp. Proc. 35, Pittsburgh, PA, 1985), p. 3.Google Scholar
3.Baeri, P., Compisano, S. V., Foti, G., and Rimini, E., J. Appl. Phys. 50, 788 (1979).CrossRefGoogle Scholar
4.Tom, H. W. K., Aumiller, G. D., and Brito-Cruz, C. H., Phys. Rev. Lett. 60, 1438 (1988).CrossRefGoogle Scholar
5.Hulin, D., Combescot, M., Bok, J., Migus, A., Vinet, I. Y., and Antonetti, A., Phys. Rev. Lett. 52, 1998 (1984).CrossRefGoogle Scholar
6.Shank, C. V., Shen, R., and Hirlimann, C., Phys. Rev. Lett. 51, 900 (1983).CrossRefGoogle Scholar
7.Sokolowski-Tinten, K., Schulz, H., Bialkowski, J., and von der Linde, D., Appl. Phys. A 53, 227 (1991).CrossRefGoogle Scholar
8.Govorkov, S. V., Schröder, Th., Shumay, I. L., and Heist, P., Phys. Rev. B 46, 6864 (1992).CrossRefGoogle Scholar
9.Saeta, P., Wang, J-K., Siegal, Y., Bloembergen, N., and Mazur, E., Phys. Rev. Lett. 67, 1023 (1991).CrossRefGoogle Scholar
10.Rota, L., Lugli, P., and Elsaesser, T. and Shah, J., Phys. Rev. B 47, 4226 (1993).CrossRefGoogle Scholar
11.Stampfli, P. and Bennemann, K. H., Phys. Rev. B 46, 10686 (1992).CrossRefGoogle Scholar
12.Stampfli, P. and Bennemann, K. H., Phys. Rev. B 49, 7299 (1994).CrossRefGoogle Scholar
13.Brorson, S. D., Fujimoto, J. G., and Ippen, E. P., Phys. Rev. Lett. 59, 1962 (1987).CrossRefGoogle Scholar
14.Szatmári, S., Appl. Phys. B 58, 211 (1994).CrossRefGoogle Scholar
15.Himmelbauer, M., Arnold, N., Bityurin, N., Arenholz, E., and Bäuerle, D., Appl. Phys. A 64, 451 (1997).Google Scholar
16.Bäuerle, D., Laser Processing and Chemistry (Springer, Heidelberg, 1996).CrossRefGoogle Scholar
17.Tiong, K. K., Amirtharaj, P. M., Pollak, F. H., and Aspnes, D. E., Appl. Phys. Lett. 44, 122 (1984).CrossRefGoogle Scholar