Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T11:11:11.624Z Has data issue: false hasContentIssue false

Structural and thermodynamic properties of nanocrystalline fcc metals prepared by mechanical attrition

Published online by Cambridge University Press:  31 January 2011

J. Eckert
Affiliation:
W. M. Keck Laboratory of Engineering Materials 138-78, California Institute of Technology, Pasadena, California 91125
J.C. Holzer
Affiliation:
W. M. Keck Laboratory of Engineering Materials 138-78, California Institute of Technology, Pasadena, California 91125
C.E. Krill III
Affiliation:
W. M. Keck Laboratory of Engineering Materials 138-78, California Institute of Technology, Pasadena, California 91125
W.L. Johnson
Affiliation:
W. M. Keck Laboratory of Engineering Materials 138-78, California Institute of Technology, Pasadena, California 91125
Get access

Abstract

Nanocrystalline fcc metals have been synthesized by mechanical attrition. The crystal refinement and the development of the microstructure have been investigated in detail by x-ray diffraction, differential scanning calorimetry, and transmission electron microscopy. The deformation process causes a decrease of the grain size of the fcc metals to 6–22 nm for the different elements. The final grain size scales with the melting point and the bulk modulus of the respective metal: the higher the melting point and the bulk modulus, the smaller the final grain size of the powder. Thus, the ultimate grain size achievable by this technique is determined by the competition between the heavy mechanical deformation introduced during milling and the recovery behavior of the metal. X-ray diffraction and thermal analysis of the nanocrystalline powders reveal that the crystal size refinement is accompanied by an increase in atomic-level strain and in the mechanically stored enthalpy in comparison to the undeformed state. The excess stored enthalpies of 10–40% of the heat of fusion exceed by far the values known for conventional deformation processes. The contributions of the atomic-level strain and the excess enthalpy of the grain boundaries to the stored enthalpies are critically assessed. The kinetics of grain growth in the nanocrystalline fcc metals are investigated by thermal analysis. The activation energy for grain boundary migration is derived from a modified Kissinger analysis, and estimates of the grain boundary enthalpy are given.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gleiter, H. and Marquardt, P., Z. Metallk. 75, 263 (1984).Google Scholar
2.Birringer, R., Gleiter, H., Klein, H. P., and Marquardt, P., Phys. Lett. A 102, 356 (1984).CrossRefGoogle Scholar
3.Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
4.Karch, J., Birringer, R., and Gleiter, H., Nature 330, 556 (1987).CrossRefGoogle Scholar
5.Mütschele, T. and Kirchheim, R., Scripta Metall. 21, 135 (1987).CrossRefGoogle Scholar
6.Herr, U., Jing, J., Gonser, U., and Gleiter, H., Solid State Commun. 76, 197 (1990).CrossRefGoogle Scholar
7.Hellstem, E., Fecht, H. J., Fu, Z., and Johnson, W. L., J. Mater. Res. 4, 1292 (1989).CrossRefGoogle Scholar
8.Hellstem, E., Fecht, H. J., Fu, Z., and Johnson, W. L., J. Appl. Phys. 65, 305 (1989).CrossRefGoogle Scholar
9.Fecht, H. J., Hellstem, E., Fu, Z., and Johnson, W. L., Metall. Trans. A 21, 2333 (1990).CrossRefGoogle Scholar
10.Fecht, H. J., Hellstem, E., Fu, Z., and Johnson, W. L., Adv. Powder Metall. 1, 11 (1989).Google Scholar
11.Oehring, M. and Bormann, R., J. de Physique (Paris) 51, C4169 (1990).Google Scholar
12.Schlump, W. and Grewe, H., in Proc. DGM Conf. on New Materials by Mechanical Alloying Techniques, edited by Arzt, E. and Schultz, L. (DGM Informationsgesellschaft, Oberursel, 1989), p. 307.Google Scholar
13.Shingu, P. H., Huang, B., Kuyama, J., Ishihara, K. N., and Nasu, S., in Proc. DGM Conf. on New Materials by Mechanical Alloying Techniques, edited by Arzt, E. and Schultz, L. (DGM Informationsgesellschaft, Oberursel, 1989), p. 319.Google Scholar
14.Jang, J. S. C. and Koch, C. C., J. Mater. Res. 5, 498 (1990).CrossRefGoogle Scholar
15.Jang, J. S. C. and Koch, C. C., Scripta Metall. Mater. 24, 1599 (1990).CrossRefGoogle Scholar
16.Eckert, J., Holzer, J. C., Krill, C. E. III, and Johnson, W. L., Mater. Sci. Forum (in press).Google Scholar
17.Cullity, B. D., Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley, Reading, MA, 1978).Google Scholar
18.Warren, B. E., X-ray Diffraction (Addison-Wesley, Reading, MA, 1969), p. 251.Google Scholar
19.Klug, H. P. and Alexander, L., X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (John Wiley and Sons, New York, 1974), p. 661.Google Scholar
20.Bevington, P. R., Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969).Google Scholar
21.Smithells, C. J., Smithells Metals Reference Book, 6th ed., edited by Brandes, E. A. (Butterworths, London, 1983), p. 15–1.Google Scholar
22.Birringer, R., Herr, U., and Gleiter, H., Trans. Jpn. Inst. Metals. Suppl. 27, 43 (1986).Google Scholar
23.Rupp, J. and Birringer, R., Phys. Rev. B 36, 7888 (1987).CrossRefGoogle Scholar
24.Schaefer, H. E., Würschum, R., Birringer, R., and Gleiter, H., J. Less-Common Met. 140, 161 (1988).CrossRefGoogle Scholar
25.Korn, D., Morsch, A., Birringer, R., Arnold, W., and Gleiter, H., J. de Physique (Paris) 49, C5769 (1988).Google Scholar
26.Cokshi, A. H., Rosen, A., Karch, J., and Gleiter, H., Scripta Metall. 23, 1679 (1989).CrossRefGoogle Scholar
27.Nieman, G. W., Weertman, J. R., and Siegel, R. W., J. Mater. Res. 6, 1012 (1991).CrossRefGoogle Scholar
28.Wunderlich, W., Ishida, Y., and Maurer, R., Scripta Metall. Mater. 24, 403 (1990).CrossRefGoogle Scholar
29.Long, N. J., Marzke, R. F., McKelvy, M., and Glaunsinger, W. S., Ultramicroscopy 20, 15 (1986).CrossRefGoogle Scholar
30.Easterling, K. E. and Thölén, A. R., Powder Met. 16, 112 (1973).CrossRefGoogle Scholar
31.Chen, L. C. and Spaepen, F., J. Appl. Phys. 69, 679 (1991).CrossRefGoogle Scholar
32.Holzer, J. C., unpublished results.Google Scholar
33.Meyers, M. A. and Chawla, K. K., Mechanical Metallurgy (Prentice-Hall, Englewood Cliffs, NJ, 1984), p. 494.Google Scholar
34.Hughes, G. D., Smith, S. D., Pande, C. S., Johnson, H. R., and Armstrong, R. W., Scripta Metall. 20, 93 (1986).CrossRefGoogle Scholar
35.Lu, K., Wei, W. D., and Wang, J. T., Scripta Metall. Mater. 24, 2319 (1990).CrossRefGoogle Scholar
36.Höfler, H. J. and Averback, R. S., Scripta Metall. Mater. 24, 2401 (1990).CrossRefGoogle Scholar
37.Nieman, G. W., Weertman, J. R., and Siegel, R. W., Scripta Metall. 23, 2013 (1989).CrossRefGoogle Scholar
38.Nieh, T. G. and Wadsworth, J., Scripta Metall. Mater. 25, 955 (1991).CrossRefGoogle Scholar
39.Bever, M. B., Holt, D. L., and Titchener, A. L., Prog. Mater. Sci. 17, 1 (1973).CrossRefGoogle Scholar
40.Mays, C. W., Vermaak, J. S., and Kuhlmann-Wilsdorf, D., Surf. Sci. 12, 134 (1968).CrossRefGoogle Scholar
41.Cammarata, R. C. and Eby, R. K., J. Mater. Res. 6, 888 (1991).CrossRefGoogle Scholar
42.Haasen, P., Physical Metallurgy, 2nd ed. (Cambridge University Press, Cambridge, U. K., 1986), p. 333.Google Scholar
43.Johnson, W. L., Prog. Mater. Sci. 30, 81 (1986).CrossRefGoogle Scholar
44.Zhu, X., Birringer, R., Herr, U., and Gleiter, H., Phys. Rev. B 35, 9085 (1987).CrossRefGoogle Scholar
45.Haubold, T., Birringer, R., Lengeler, B., and Gleiter, H., Phys. Lett. A 135, 461 (1989).CrossRefGoogle Scholar
46.Haubold, T., Krauss, W., and Gleiter, H., Philos. Mag. Lett. 63, 245 (1991).CrossRefGoogle Scholar
47.Fitzsimmons, M. R., Eastman, J. A., Muller-Stach, M., and Wallner, G., in Clusters and Cluster-Assembled Materials, edited by Averback, R. S., Bernholc, J., and Nelson, D. L. (Mater. Res. Soc. Symp. Proc. 206, Pittsburgh, PA, 1991), p. 475.Google Scholar
48.Nieman, G. W., Weertman, J. R., and Siegel, R. W., in Clusters and Cluster-Assembled Materials, edited by Averback, R. S., Bernholc, J., and Nelson, D. L. (Mater. Res. Soc. Symp. Proc. 206, Pittsburgh, PA, 1991), p. 493.Google Scholar
49.Swalin, R. A., Thermodynamics of Solids, 2nd ed. (John Wiley and Sons, New York, 1972), p. 244.Google Scholar
50.Swalin, R. A., Thermodynamics of Solids, 2nd ed. (John Wiley and Sons, New York, 1972), p. 230.Google Scholar
51.Foiles, S. M., Baskes, M. I., and Daw, M. S., Phys. Rev. B 33, 7983 (1986).CrossRefGoogle Scholar
52.Wolf, D., Scripta Metall. 23, 1913 (1989).CrossRefGoogle Scholar
53.Kissinger, H. E., J. Res. Natn. Bur. Stand. 57, 217 (1956).CrossRefGoogle Scholar
54.Wazzan, A. R., J. Appl. Phys. 36, 3596 (1965).CrossRefGoogle Scholar
55.Smithells, C. J., Smithells Metals Reference Book, 6th ed., edited by Brandes, E. A. (Butterworths, London, 1983), p. 13–1.Google Scholar
56.Smithells, C. J., Smithells Metals Reference Book, 6th ed., edited by Brandes, E. A. (Butterworths, London, 1983), p. 1394.Google Scholar