Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T12:04:22.882Z Has data issue: false hasContentIssue false

Structural and superconducting properties of melt-grown Y–Ba–Cu–O superconductors

Published online by Cambridge University Press:  31 January 2011

R. Gopalan
Affiliation:
Defence Metallurgical Research Laboratory, Hyderabad 500 258, India
T. Rajasekharan
Affiliation:
Defence Metallurgical Research Laboratory, Hyderabad 500 258, India
T. Roy
Affiliation:
Defence Metallurgical Research Laboratory, Hyderabad 500 258, India
G. Rangarajan
Affiliation:
Department of Physics, Indian Institute of Technology, Madras 600 036, India
V. Ganesan
Affiliation:
Inter University Consortium for DAE facilities, University Campus, Khandwa Road, Indore 452001, India
R. Srinivasan
Affiliation:
Inter University Consortium for DAE facilities, University Campus, Khandwa Road, Indore 452001, India
Get access

Abstract

YBa2Cu3O7 (123) samples with varying Y2BaCuO5 (211) concentrations (0 mol%, 20 mol%, 28 mol%, and 50 mol%) were synthesized by the melt-growth process. Microstructural characterizations were done using x-ray diffraction (XRD), optical microscopy, scanning electron microscopy, and transmission electron microscopy (TEM). It was found that 123 platelet width, crack width between the platelets, and 211 particle size decreased systematically with increasing 211 concentration. TEM study showed that there is a critical radius of curvature (rc ≤ 0.2 μm-0.3 μm) of the 123/211 interface where defects/contrasts of strain field start to appear, and these defects are believed to be responsible for pinning the magnetic flux. Microhardness measurements showed that Vickers hardness (VHN) increases with increasing 211 content. Critical current density (Jc) values obtained from magnetization measurements using a SQUID magnetometer were found to increase in melt-grown samples by the addition of 211 content.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jin, S., Tiefel, T., Sherwood, R., van Dover, R., Davis, M., Kammlott, G., and Fastnacht, R., Phys. Rev. B 37, 7850 (1988).CrossRefGoogle Scholar
2. Murakami, M., Morita, M., and Koyama, N., Jpn. J. Appl. Phys. 28, 1189 (1989).CrossRefGoogle Scholar
3. Murakami, M., Supercond. Sci. Technol. 5, 185 (1992).CrossRefGoogle Scholar
4. Salama, K., Selvamanickam, V., Gao, L., and Sun, K., Appl. Phys. Lett. 54, 2352 (1989).CrossRefGoogle Scholar
5. Zhan, L., Zhang, P-X., Ji, P., Wang, K-G., Wang, J-R., and Wu, X-Z., Supercond. Sci. Technol. 3, 490 (1990).CrossRefGoogle Scholar
6. McGinn, P., Zhu, N., Chen, W.. Sengupta, S., and Li, T., Physica C 176, 203 (1991).CrossRefGoogle Scholar
7. Alexander, K. B., Goyal, A., Kroeger, D. M., Selvamanickam, V., and Salama, K., Phys. Rev. B 45, 5622 (1992).CrossRefGoogle Scholar
8. Selvamanickam, V., Partsinevelos, C., McGuire, A. V., and Salama, K., Appl. Phys. Lett. 60, 3313 (1992).CrossRefGoogle Scholar
9. Karabashev, S. and Wolf, Th., Mater. Lett. 16, 331 (1993).CrossRefGoogle Scholar
10. Meng, R. L., Kinalidis, C., Sun, Y., Gao, L., Hor, P., and Chu, C. W., Nature (London) 345, 326 (1990).CrossRefGoogle Scholar
11. Jin, S.. Kammlott, G. W., Tiefel, T. H., Kodas, T. T., Ward, T. L., and Kroeger, D. M., Physica C 181, 57 (1991).CrossRefGoogle Scholar
12. Rajasekharan, T., Gopalan, R., and Roy, T., Pramana-Jl. Phys. 37, L173 (1991).CrossRefGoogle Scholar
13. Aselage, T. and Keefer, K., J. Mater. Res. 3, 1279 (1988).CrossRefGoogle Scholar
14. Bell, A. M. T., Supercond. Sci. Technol. 3, 55 (1990).CrossRefGoogle Scholar
15. Gopalan, R., Singh, A. K., Rajasekharan, T., Rangarajan, G., and Varadaraju, U. V., J. Mater. Sci. Lett. 14, 1043 (1995).CrossRefGoogle Scholar
16. Cook, R. F., Shaw, T.M., and Duncombe, P.R., Adv. Ceram. Mater. 2, (3B), 606 (1987).CrossRefGoogle Scholar
17. Cook, R. F., Dinger, T. R., and Clarke, D. R., Appl. Phys. Lett. 51, 454 (1987).CrossRefGoogle Scholar
18. Goyal, A., Alexander, K. B., Kroeger, D. M., Funkenbusch, F. D., and Burns, S. J., Physica C 210, 197 (1991).CrossRefGoogle Scholar
19. Nakahara, S., Fisanick, G. J., Yan, M. F., van Dover, R. B., and Boone, T., J. Cryst. Growth 85, 639 (1987).CrossRefGoogle Scholar
20. Murakami, M., Fujimoto, H., Oyama, T., Gotoh, S., Shiohara, Y., Koshizuka, N., and Tanaka, S., ICMC 90, High Temperature superconductors, Materials Aspects, May 9–11, 1990, Garmisch-Partenkirchen, Germany.Google Scholar
21. Mironova, M., Lee, D. F., and Salama, K., Physica C 211, 188 (1993).CrossRefGoogle Scholar
22. Wang, R., Ren, H., Xiao, L., He, Q., Wang, C., and Yu, D., Supercond. Sci. Technol. 3, 344 (1990).Google Scholar
23. Shi, D., Goretta, K. C., Chen, J. G., and Salem-Sugui, S. Jr.., TMS Annual Meeting in New Orleans, LA, Feb. 17–21, 1991.Google Scholar
24. Clem, J. R., cited in: Umezawa, A., Crabtree, G. W., Liu, J. Z., Weber, H. W., Kwok, W.K., Nunez, L.H., Moran, T. J., Sowers, C., and Claus, H., Phys. Rev. B 36, 7151 (1987).Google Scholar
25. Fung, P. C. W., Du, Z. L., Chow, J. C. L., He, Z. H., Yu, T. F., Luo, Y. Y., Li, Q. Y. and Lu, Y., Physica C 212, 279 (1993).CrossRefGoogle Scholar
26. Du, Z. L., Fung, P. C. W., Chow, J. C. L., Yu, T. F., He, Z. H., Li, Y., Luo, Y. Y., and Zhang, J. X., Physica C 215, 319 (1993).CrossRefGoogle Scholar
27. Schmitz, G. J., Laakmann, J., Wolters, Ch., Rex, S., Gawalek, W., Habisreuther, T., Bruchlos, G., and Görnert, P., J. Mater. Res. 8, 2774 (1993).CrossRefGoogle Scholar
28. Matsuo, Y. and Sasaki, H., J. Am. Ceram. Soc. 49, 229 (1966).CrossRefGoogle Scholar
29. Shaw, T. M., Shinde, S. L., Dimos, D., Cook, R. F., Duncombe, P. R., and Kroll, C., J. Mater. Res. 4, 248 (1989).CrossRefGoogle Scholar