Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T21:28:50.587Z Has data issue: false hasContentIssue false

Structural and magnetic characterization of granular Y1Ba2Cu3O7−δ nanocrystalline powders

Published online by Cambridge University Press:  03 March 2011

M. Simoneau
Affiliation:
Departement de Métallurgie et de Génie des Matériaux, Ecole Polytechnique, Montréal, Québec, Canada, H3C 3A7
G. L'Espérance
Affiliation:
Departement de Métallurgie et de Génie des Matériaux, Ecole Polytechnique, Montréal, Québec, Canada, H3C 3A7
M.L. Trudeau
Affiliation:
Technologie des Matériaux, Institut de Recherche d'Hydro-Québec, 1800 montée Ste-Julie, Varennes, Québec, Canada, J3X 1S1
R. Schulz
Affiliation:
Technologie des Matériaux, Institut de Recherche d'Hydro-Québec, 1800 montée Ste-Julie, Varennes, Québec, Canada, J3X 1S1
Get access

Abstract

High energy ball milling has been used to produce nanocrystalline Y1Ba2Cu3O7-δ powders. These powders are being used as starting materials for manufacturing superconducting textured wires by a solid state recrystallization process. Magnetic and microstructural characterizations were performed as a function of milling time. The milling reduces the average crystal size and creates low and high-angle grain boundaries which increase the granularity of the superconductor. As a result, the long-range order on the oxygen sublattice and on the yttrium and barium sites is destroyed. A transition from orthorhombic to tetragonal and finally to a cubic metastable phase is observed. Total loss of superconductivity occurs after about 1 h of milling. Prior to this time, superconductivity can partially be restored by room-temperature aging. High-temperature heat treatment of the nanocrystalline phase produces a tetragonal structure with c = 3a.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jin, S., Tiefel, T. H., Sherwood, R. E., Davis, M. E., van Dover, R. B., G. W. Kammlott, R. A. Fastnacht, and Keith, H. D., Appl. Phys. Lett. 52, 2074 (1988).CrossRefGoogle Scholar
2Murakami, M., Morita, M., Doi, K., and Miyamoto, K., Jpn. J. Appl. Phys. 28, 1189 (1989).CrossRefGoogle Scholar
3Koch, C. C., Cavin, O. B., McKamey, C. G., and Scarbrough, J. O., Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
4Hellstern, E., Fecht, H. J., Fu, Z., and Johnson, W. L., J. Appl. Phys. 65, 305 (1989).CrossRefGoogle Scholar
5Lavallee, F., Simoneau, M., L'Espérance, G., and Schulz, R., Phys. Rev. B 44, 12003 (1991).CrossRefGoogle Scholar
6Maeno, Y., Teraoka, H., Matsukuma, K., Yoshida, K., Sugiyama, K., Nakamura, F., and Fujita, T., Physica C 185–189, 587 (1991).CrossRefGoogle Scholar
7Nazzal, A. I., Lee, V. Y., Engler, E. M., Jacowitz, R. D., Tokura, Y., and Torrance, J. B., Physica C 153–155, 1367 (1988).CrossRefGoogle Scholar
8Jang, J. S. C. and Koch, C. C., J. Mater. Res. 5, 325 (1990).CrossRefGoogle Scholar
9Loeff, P., Bakker, H., and De Boer, F. R., in New Materials by Mechanical Alloying Techniques, edited by Arzt, E. and Schultz, L. (DGM Informationsgesellschaft, Oberursel, 1989), p. 119.Google Scholar
10Simoneau, M., Lavallee, F., L'Esperance, G., Trudeau, M., and Schulz, R., in Ordering and Disordering in Alloys, edited by Yavari, A. R. (Elsevier, Grenoble, 1992), p. 385.CrossRefGoogle Scholar
11Nakazawa, Y., Ishikawa, M., Takabatake, T., Koga, K., and Terakura, K., Jpn. J. Appl. Phys. 26, L796 (1987).CrossRefGoogle Scholar
12Lay, K. W., J. Am. Ceram. Soc. 72, 696 (1989).CrossRefGoogle Scholar
13Caignaert, V., Hervieu, M., Wang, J., Desgardin, G., and Raveau, B., Physica C 170, 139 (1990).CrossRefGoogle Scholar
14Cullity, B. D., Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1978), p. 108.Google Scholar
15Benjamin, J. S. and Volin, T. E., Metall. Trans. 5, 1929 (1974).CrossRefGoogle Scholar
16Shoenberg, D., Superconductivity (Cambridge University Press, Cambridge, U.K., 1952), p. 164.Google Scholar
17Yeshurun, Y. and Malozemoff, A. P., Phys. Rev. Lett. 60, 2202 (1988).CrossRefGoogle Scholar
18Tinkham, M. and Lobb, J. C., Solid State Phys. 42, 91 (1989).CrossRefGoogle Scholar
19Babcock, S. E. and Larbalestier, D. C., J. Mater. Res. 5, 919 (1990).CrossRefGoogle Scholar
20Hellstern, E., Fecht, H. J., Garland, C., and Johnson, W. L., in Multicomponent Ultrafine Microstructures, edited by McCandlish, L. E., Polk, D. E., Siegel, R. W., and Kear, B. H. (Mater. Res. Soc. Symp. Proc. 132, Pittsburgh, PA, 1989), p. 139.Google Scholar
21Rothman, S. J., Routbort, J. L., and Baker, J. E., Phys. Rev. B 40, 8852 (1989).CrossRefGoogle Scholar
22Veal, B. W., Paulikas, A. P., You, H., Shi, H., Fang, Y., and Downey, J. W., Phys. Rev. B 42, 6305 (1990).CrossRefGoogle Scholar
23Ceder, G., McCormack, R., and de Fontaine, D., Phys. Rev. B 44, 2377 (1988).CrossRefGoogle Scholar
24Schultz, L., Hellstern, E., and Zorn, G., Z. Phys. Chem. 157, 203 (1988).CrossRefGoogle Scholar
25Schulz, R., Trudeau, M., and Huot, J. Y., Phys. Rev. Lett. 62, 2849 (1989).CrossRefGoogle Scholar
26Lau, S-F., Rosenthal, A. B., Pyrros, N. P., Graham, J. A., and Cheng, H. N., J. Mater. Res. 6, 227 (1991).CrossRefGoogle Scholar
27Jorgensen, J. D., Hinks, D. G., Radaelli, P. G., Pei, S., Lightfoot, P., Dabrowski, B., Segre, C. U., and Hunter, B. A., Physica C 184–185, 184 (1991).CrossRefGoogle Scholar