Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T17:29:43.176Z Has data issue: false hasContentIssue false

Stress-induced formation of structural defects on the {311} planes of silicon

Published online by Cambridge University Press:  03 March 2011

Z. Weng-Sieh
Affiliation:
Department of Materials Science & Mineral Engineering, University of California-Berkeley, and Lawrence Berkeley Laboratory, Materials Sciences Division, Berkeley, California 94720
P. Krulevitch
Affiliation:
Department of Mechanical Engineering, University of California-Berkeley, Berkeley, California 94720
R. Gronsky
Affiliation:
Department of Materials Science & Mineral Engineering, University of California-Berkeley, and Lawrence Berkeley Laboratory, Materials Sciences Division, Berkeley, California 94720
G.C. Johnson
Affiliation:
Department of Mechanical Engineering, University of California-Berkeley, Berkeley, California 94720
Get access

Abstract

Structural defects occurring on the {311} planes of single crystal silicon have been observed near the bottom oxide corner in silicon-on-insulator structures formed by selective epitaxial growth. These {311} defects exhibit a preferential orientation and are clustered near the silicon/silicon dioxide interface. This new observation provides an opportunity to study the mechanism of {311} defect generation in a system with discernible microstructure and stress state. High resolution electron microscopy combined with analytical and numerical three-dimensional stress modeling are used to show the dependence of these {311} defects on the local stress field, and to establish their origin in terms of a homogeneous dislocation nucleation model.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Tan, T. Y., Foil, H., and Hu, S. M., Philos. Mag. A 44, 127 (1981).Google Scholar
2Bourret, A., Inst. Phys. Conf. Ser. 87, 39 (1987).Google Scholar
3A. H. van Ommen, Koek, B. K., and Viegers, M. P. A., Appl. Phys. Lett. 49, 628 (1986).Google Scholar
4Krause, S. J., Jung, C. O., Ravi, T. S., Wilson, S. R., and Burke, D. E., in Silicon-on-Insulator and Buried Metals in Semiconductors, edited by Sturm, J. C., Chen, C. K., Pfeiffer, L., and Hemment, P. L. F. (Mater. Res. Soc. Symp. Proc. 107, Pittsburgh, PA, 1988), p. 93.Google Scholar
5Cerofolini, G. F., Meda, L., Queirolo, G., Armigliato, A., Soimi, S., Nava, F., and Ottaviani, G., J. Appl. Phys. 56, 2981 (1984).Google Scholar
6Takeda, S., Hirata, M., Muto, S., Hua, G., Hiraga, K., and Kiritani, M., Ultramicroscopy 39, 180 (1991).Google Scholar
7Bender, H., Claeys, C., Van Landuyt, J., Declerck, G., Amelinckx, S., and Van Overstraeten, R., J. de Phys. 44, 261 (1983).Google Scholar
8Bartsch, H., Hoehl, D., and Kastner, G., Phys. Status Solidi A 83, 543 (1984).Google Scholar
9Stable phases of silicon other than the diamond cubic structure are also known to exist under large hydrostatic pressure.10Google Scholar
10Yin, M. T. and Cohen, M. L., Phys. Rev. B 26, 5568 (1982); Wentorf, R. H. and Kasper, J. S., Science 139, 338 (1963).Google Scholar
11Bender, H. and Vanhellmont, J., Phys. Status Solidi A 107, 455 (1988).Google Scholar
12Carpenter, R. W., Chen, Y. L., Kim, M. J., and Barry, J. C., Inst. Phys. Conf. Ser. 100, 543 (1989).Google Scholar
13See for example, Wolf, S. and Tauber, R. N., Silicon Processing for the VLSI Era (Lattice Press, Sunset Beach, CA, 1986).Google Scholar
14Pirouz, P., Dahmen, U., Westamacott, K. H., and Chaim, R., Acta Metall. Mater. 38, 329 (1990).Google Scholar
15Demenet, J. L., Rabier, J., and Garem, H., Inst. Phys. Conf. Ser. 87, 355 (1987).Google Scholar
16Vanhellmont, J., Bender, H., and Claeys, C., Inst. Phys. Conf. Ser. 104, 461 (1989).Google Scholar
17Vanhellmont, J., Amelinckx, S., and Claeys, C., J. Appl. Phys. 61, 2170 (1987).Google Scholar
18Hu, S. M., J. Appl. Phys. 66, 2741 (1989); Hu, S. M., J. Appl. Phys. 67, 1092 (1990).Google Scholar
19Mura, T., Micromechanics of Defects in Solids (Martinus Nijhoff Publishers, Boston, MA, 1982).Google Scholar
20Eshelby, J. D., Proc. R. Soc. London 241, 376 (1957).Google Scholar
21Burkhardt, P. J. and Marvel, R. F., J. Electrochem. Soc. 116, 864 (1969).Google Scholar
22Maissel, L., J. Appl. Phys. 32, 221 (1960).Google Scholar
23Brantley, W. A., J. Appl. Phys. 44, 534 (1973).Google Scholar
24Nye, J. F., Physical Properties of Crystals (Oxford University Press, Oxford, 1992).Google Scholar
25Shikai, N., Bradt, R. C., and Rindone, G. E., J. Am. Ceram. Soc. 64, 426 (1981).Google Scholar
26Spinner, S., J. Am. Ceram. Soc. 39, 113 (1956).Google Scholar
27Mazurin, O. V., Strelstina, M. J., and Shvaiko-Shaikovskaya, T. P., Handbook of Glass Data (Elsevier, Amsterdam, The Netherlands, 1983), p. 31.Google Scholar
28Chidambarrao, D., Peng, J. P., and Srinivasan, G. R., J. Appl. Phys. 70, 4816 (1991).Google Scholar
29Popov, E. P., Introduction to Mechanics of Solids (Prentice Hall, Englewood Cliffs, NJ, 1968).Google Scholar
30Eremenko, V. G. and Nikitenko, V. I., Phys. Status Solidi A 14, 317 (1972).Google Scholar
31Churchman, A. T., Geach, G. A., and Winton, J., Proc. R. Soc. London 238, 194 (1956).Google Scholar
32Castaing, J., Veyssiere, P., Kubin, L. P., and Rabier, J., Philos. Mag. A 44, 1407 (1981).Google Scholar
33Gibson, J. M., Phys. Rev. Lett. 53, 1859 (1984).Google Scholar
34See for example, Lambert, J. A. and Dobson, P. S., Philos. Mag. A 44, 1031 (1981).Google Scholar
35Hirth, J. P. and Loethe, J., Theory of Dislocations (John Wiley and Sons, New York, 1962).Google Scholar