Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T00:45:59.676Z Has data issue: false hasContentIssue false

Stress nature investigation on heteroepitaxial 3C–SiC film on (100) Si substrates

Published online by Cambridge University Press:  24 July 2012

Ruggero Anzalone*
Affiliation:
IMM-CNR, sezione di Catania, Stradale Primosole 50, 95121, Catania, Italy
Massimo Camarda
Affiliation:
IMM-CNR, sezione di Catania, Stradale Primosole 50, 95121, Catania, Italy
Christopher Locke
Affiliation:
Department of Electrical Engineering, University of South Florida, Tampa, Florida 33620
Josè Carballo
Affiliation:
Department of Electrical Engineering, University of South Florida, Tampa, Florida 33620
Nicolò Piluso
Affiliation:
IMM-CNR, sezione di Catania, Stradale Primosole 50, 95121, Catania, Italy
Antonino La Magna
Affiliation:
IMM-CNR, sezione di Catania, Stradale Primosole 50, 95121, Catania, Italy
Alex A. Volinsky
Affiliation:
Department of Mechanical Engineering, University of South Florida Tampa, Florida 33620
Stephen E. Saddow
Affiliation:
Department of Electrical Engineering, University of South Florida, Tampa, Florida 33620; and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida 33620
Francesco La Via
Affiliation:
IMM-CNR, sezione di Catania, Stradale Primosole 50, 95121, Catania, Italy
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

To understand the impact that the growth rate has on the residual stress of chemical vapor deposition-grown 3C–SiC heteroepitaxial films on Si substrates, growth experiments were performed. The film thickness was held constant at ∼2.5 μm independent of the growth rate so as to allow for direct film comparison as a function of the growth rate. Stress analysis performed by profilometer curvature measurement, μιχρο-Raman shift analysis and micro-machined freestanding structures, show an apparent disagreement about the stress nature. This incongruity between the experimental data can be explained assuming a strong stress field located in the substrate related to defects generated in the silicon during the growth process.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nelson, W.E., Halden, F.A., and Rosengreen, A.: Growth and properties of â-SiC single crystals. J. Appl. Phys. 37, 33 (1966).CrossRefGoogle Scholar
2.Sarro, P.M.: Silicon carbide as a new MEMS technology. Sens. Actuators, A 82, 210 (2000).CrossRefGoogle Scholar
3.Reddy, D., Volinsky, A.A., Frewin, C., Locke, C., and Saddow, S.E.: Mechanical properties of 3C-SiC films for MEMS applications, in Fundamentals of Nanoindentation and Nanotribology IV, edited by Le Bourhis, E., Morris, D.J., Oyen, M.L., Schwaiger, R., and Staedler, T. (Mater. Res. Soc. Symp. Proc. 1049, Warrendale, PA, 2008) p.AA3.6.Google Scholar
4.Anzalone, R., Camarda, M., Locke, C., Alquier, D., Severino, A., Italia, M., Rodilosso, D., Tringali, C., La Magna, A., Foti, G., Saddow, S.E., La Via, F., and D’Arrigo, G.: Low stress heteroepitaxial 3C-SiC films characterized by microstructure fabrication and finite elements analysis. J. Electrochem. Soc. 157(4), H438 (2010).CrossRefGoogle Scholar
5Zielinski, M., Ndiaye, S., Chassagne, T., Juillaguet, S., Lewandowska, R., Portail, M., Leycuras, A., and Camasse, J.: Strain and wafer curvature of 3C-SiC films on silicon: Influence of the growth conditions. Phys. Status Solidi A 204(4), 981986 (2007).CrossRefGoogle Scholar
6.Coletti, C., Saddow, S.E., Frewin, C.L., Hetzel, M., Virojanadara, C., and Starke, U.: Surface studies of hydrogen etched 3C–SiC(001) on Si (001). Appl. Phys. Lett. 91, 1 (2007).CrossRefGoogle Scholar
7.Anzalone, R., Severino, A., D’Arrigo, G., Bongiorno, C., Abbondanza, G., Foti, G., Saddow, S., and La Via, F.: Heteroepitaxy of 3C-SiC on different on-axis oriented silicon substrates. J. Appl. Phys. 105, 084910 (2009).CrossRefGoogle Scholar
8.Frewin, C.L., Locke, C., Wang, J., Spagnol, P., and Saddow, S.E.: Growth of cubic silicon carbide on oxide using polysilicon as a seed layer for micro-electro-mechanical machine applications. J. Cryst. Growth 311(17), 41794182 (2009).CrossRefGoogle Scholar
9.Reyes, M., Shishkin, Y., Harvey, S., and Saddow, S.E.: Development of a high-growth rate 3C–SiC on Si CVD process, in Silicon Carbide 2006—Materials, Processing and Devices, edited by Dudley, M., Capano, M.A., Kimoto, T., Powell, A.R., and Wang, S. (Mater. Res. Soc. Symp. Proc. 911, Warrendale, PA, 2006) p. 79.Google Scholar
10.Klein, C.A.: How accurate are Stoney’s equation and recent modifications? J. Appl. Phys. 88, 5487 (2000).CrossRefGoogle Scholar
11.Wortman, J.J. and Evans, R.A.: Young’s modulus, shear modulus, and Poisson’s ratio in silicon and germanium. J. Appl. Phys. 36, 153 (1965).CrossRefGoogle Scholar
12.Kunc, K., Balkanski, M., and Nusimovici, M.A.: Lattice dynamics of several ANB8−N compounds having zincblende structure. II. Numerical calculations. Phys. Status Solidi B 72, 229 (1975).CrossRefGoogle Scholar
13.Yun, J., Takahashi, T., Ishida, Y., and Okumura, H.: Dependence of stacking fault and twin densities on deposition conditions during 3C-SiC heteroepitaxial growth on on-axis Si(0 0 1) substrates. J. Cryst. Growth 291, 140147 (2006).CrossRefGoogle Scholar
14.Cullity, B.D.: Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley, Reading, MA, 1978) p. 284.Google Scholar
15.Rohmfeld, S., Hundhausen, M., Ley, L., Zorman, C.A., and Mehregany, M.: Quantitative evaluation of biaxial strain in epitaxial 3C-SiC layers on Si(100) substrates by Raman spectroscopy. J. Appl. Phys. 91, 1113 (2002).CrossRefGoogle Scholar
16.Pezoldt, J., Stauden, T., Niebelschütz, F., Alsioufy, M.A., Nader, R., and Masri, P.: Tuning residual stress in 3C-SiC(100) on Si(100). Mater. Sci. Forum 159, 645648 (2010).Google Scholar
17.Anzalone, R., D’Arrigo, G., Camarda, M., Locke, C., Saddow, S.E., and La Via, F.: Advanced residual stress analysis and FEM simulation on heteroepitaxial 3C–SiC for MEMS application. J. Microelectromech. Syst. 20(3), 745752 (2011).CrossRefGoogle Scholar
18.Drieenhuizen, B.P., Goosen, J.F.L., French, P.J., and Wolffenbuttel, R.F.: Comparison of techniques for measuring both compressive and tensile stress in thin films Sens. Actuators, B 3738, 756765 (1993).CrossRefGoogle Scholar
19.Anzalone, R., Camarda, M., Canino, A., Piluso, N., La Via, F., and D’Arrigo, G.: Defect influence on heteroepitaxial 3C-SiC Young’s modulus. Electrochem. Solid-State Lett. 14(4), H161H162 (2011).CrossRefGoogle Scholar
20.Mastropaolo, E., Cheung, R., Henry, A., and Janzén, E.: Electrothermal actuation of silicon carbide ring resonators. Microelectron. Eng. 86, 11941196 (2008).CrossRefGoogle Scholar
21.Cimalla, V., Pezoldt, J., and Ambacher, O.: Group III nitride and SiC based MEMS and NEMS: Materials properties, technology and applications. J. Phys. D: Appl. Phys. 40, 6386 (2007).CrossRefGoogle Scholar
22.Camarda, M., Anzalone, R., La Magna, A., and La Via, F.: Study of microstructure deflections and film/substrate curvature under generalized stress fields and mechanical properties. Thin Solid Films (2012), doi:10.1016/j.tsf.2012.02.014.CrossRefGoogle Scholar
23.Camarda, M., Anzalone, R., Piluso, N., Severino, A., Canino, A., La Via, F., and La Magna, A.: Extended characterization of the stress fields in the heteroepitaxial growth of 3C-SiC on silicon for sensors and device applications. Mater. Sci. Forum 717, 517 (2012).CrossRefGoogle Scholar
24.Watts, B.E., Attolini, G., Besagni, T., Bosi, M., Ferrari, C., Rossi, F., Riesz, F., and Jiang, L.: Evaluation of curvature and stress in 3C-SiC grown on differently oriented Si substrates. Mater. Sci. Forum 679680, 137 (2011).CrossRefGoogle Scholar
25.Freund, L.B., Floro, J.A., and Chason, E.: Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations. Appl. Phys. Lett. 74, 1987 (1999).CrossRefGoogle Scholar
26.Camarda, M., Piluso, N., Anzalone, R., La Magna, A., and La Via, F.: Strain field analysis of 3C-SiC free-standing microstructures by micro-Raman and theoretical modeling. Mater. Sci. Forum 711, 5560 (2012).CrossRefGoogle Scholar