Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T21:41:23.405Z Has data issue: false hasContentIssue false

Statistics of low-density microcellular materials

Published online by Cambridge University Press:  03 March 2011

David A. Noever
Affiliation:
Universities Space Research Association, NASA Marshall Space Flighi Center, ES-76, Huntsville, Alabama 35812
Get access

Abstract

The statistics of random cellular patterns are analyzed in cross sections of low-density microcellular materials. Agreement is found with a variety of topological relations previously found for other networks, namely Lewis's law and Aboav's law. To investigate three-dimensional packing effects, experiments are performed on compressed polystyrene shot material, the resulting networks of which are subsequently analyzed in cross section. Implications for material properties and stability are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Glazier, J. A., Gross, S. P., and Stavans, J., Phys. Rev. A 36, 306 (1987).CrossRefGoogle Scholar
2Stavans, J. and Glazier, J. A., Phys. Rev. Lett. 62, 1318 (1989).CrossRefGoogle Scholar
3Weaire, D., Phys. Rev. Lett. 64, 3202 (1990).Google Scholar
4See, e.g., Science 58, 807 (1990).Google Scholar
5Weaire, D. and Rivier, N., Contemp. Phys. 25, 73 (1984).CrossRefGoogle Scholar
6Zin, A., Phys. Rep. 62, 102 (1990).Google Scholar
7LeMay, J. D., Hopper, R. W., Hrubesh, L. W., and Pekala, R. W., Mater. Res. Bull. XV, 22 (1990) (see Williams's data, Fig. 1).Google Scholar
8LeMay, J. D., Hopper, R. W., Hrubesh, L. W., and Pekala, R. W., Mater. Res. Bull. XV, 27 (1990) (see Fig. 3).Google Scholar
9Stine, K. J., Rauseo, S. A., Moore, B. G., Wise, J. A., and Knobler, CM., Phys. Rev. A 41, 6884 (1990).Google Scholar
10Noever, D. A., Phys. Rev. A 45, 512 (1991).Google Scholar
11Kawasaki, K., Nagai, T., and Nakashima, K., Philos. Mag. B 48, 245 (1983).Google Scholar
12Srolovitz, D. J., Anderson, M. P., Sahni, P. S., and Grest, G. S., Phys. Rev. Lett. 50, 263 (1983).Google Scholar
13Shvirst, E. M., Krinskii, V. I., and Ivanitskii, G. R., Biophysics 29, 710 (1984).Google Scholar
14Berge, B., Simon, A. J., and Libchaber, A., Phys. Rev. A 41, 6893 (1990).Google Scholar
15Rivier, N., Philos. Mag. B 52, 795 (1985).Google Scholar
16Turner, M. G., Constanza, R., and Sklar, F., Ecol. Modelling 48, 2 (1989).Google Scholar
17Lewis, F. T., Am. Scientist 77, 358 (1945) and references therein.Google Scholar
18Lambert, C. J. and Weaire, D., Metallography 14, 307 (1981).Google Scholar
19Cheng, H. C. and Lemlich, R., Ind. Eng. Chem. 22, 105 (1983).Google Scholar
20Held, G. A., Solina, D. H., Keane, D. T., Haag, W. J., Horn, P. M., and Grinstein, G., Phys. Rev. Lett. 65, 1120 (1990).Google Scholar
21Aboav, D. A., Metallography 13, 43 (1980).Google Scholar