Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T13:19:37.583Z Has data issue: false hasContentIssue false

The standard molar enthalpies of formation of α−Si3N4 and β−Si3N4 by combustion calorimetry in fluorine, and the enthalpy of the α-to-β transition at the temperature 298.15 K

Published online by Cambridge University Press:  31 January 2011

P. A. G. O'Hare
Affiliation:
Chemical and Physical Properties Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Iwona Tomaszkiewicz
Affiliation:
Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
H. J. Seifert
Affiliation:
Max-Planck-Institut füur Metallforschung, Pulvermetallurgisches Laboratorium, D-70569 Stuttgart, Germany
Get access

Abstract

The standard molar enthalpies of formation ΔfH°m of α−Si3N4 and β−Si3N4 have been determined by fluorine combustion calorimetry: ΔfH°m (Si3N4, cr, α, 298.15 K) = − (828.9 ± 3.4) kJ · mol−1 and ΔfH°m (Si3N4, cr, β, 298.15 K) = – (827.8 ± 2.5) kJ · mol−1. These results indicate that the enthalpy of the α-to-β transition, approximately (1 ± 4) kJ · mol−1, is negligible within experimental uncertainty.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Thermodynamic Properties of Individual Substances, 4th ed., edited by Gurvich, L. V., Veyts, I. V., and Alcock, C. B. (Hemisphere, New York, 1991), Vol. 2.Google Scholar
2.Wood, J. L., Adams, G. P., Mukerji, J., and Margrave, J. L., Third International Conference on Chemical Thermodynamics, Badenbei-Wien, Austria, 3–7 September, 1973, pp. 115122.Google Scholar
3.Rocabois, P., Chatillon, C., and Bernard, C., J. Am. Ceram. Soc. 79, 13511360 (1996).CrossRefGoogle Scholar
4.Riedel, R., Kienzle, A., Dressler, W., Ruwisch, L., Bill, J., and Aldinger, F., Nature 382, 796798 (1996).CrossRefGoogle Scholar
5.Andrievski, R. A., Int. J. Self-Propagating High-Temp. Synth. 4, 237244 (1995).Google Scholar
6.Gazzara, C. P. and Messier, D. R., Am. Ceram. Soc. Bull. 56, 777780 (1977).Google Scholar
7.O'Hare, P. A. G. and Hope, G. A., J. Chem. Thermodyn. 24, 639647 (1992).CrossRefGoogle Scholar
8.O'Hare, P. A. G., unpublished results.Google Scholar
9.Nuttall, R. L., Wise, S., and Hubbard, W. N., Rev. Sci. Instrum. 32, 14021403 (1961).CrossRefGoogle Scholar
10.O'Hare, P. A. G., Susman, S., Volin, K. J., and Rowland, S. C., J. Chem. Thermodyn. 24, 10091017 (1992).CrossRefGoogle Scholar
11.Johnson, G. K., J. Chem. Thermodyn. 18, 801802 (1986).CrossRefGoogle Scholar