Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T13:00:12.211Z Has data issue: false hasContentIssue false

The stability of YBa2Cu3O7−x in contact with silver

Published online by Cambridge University Press:  03 March 2011

Sern-Hau Lin
Affiliation:
Chemical Engineering Department, National Taiwan University, Taipei, Taiwan
Nae-Lih Wu*
Affiliation:
Chemical Engineering Department, National Taiwan University, Taipei, Taiwan
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

The stability of YBa2Cu3O7−x (the 123 compound) in contact with silver (Ag) at temperatures below 900 °C was investigated by conducting SEM and EDX analyses on 123 agglomerates that were enclosed in a dense Ag matrix and subjected to various thermal treatments. The stability of the 123 agglomerates was found to depend heavily on the oxygen content in the Ag matrix. In the case of insufficient oxygen content in Ag, the 123 agglomerates, which were as large as 150 μm thick, decomposed readily at temperatures above 500 °C. The complete decomposition process can be summarized as continuous extraction of Ba from the 123 oxide into the surrounding Ag matrix and is proposed to be driven by high mutual solubilities between Ag and Ba under the oxygen-lean condition. Prolonged preoxygenation of the (123 + Ag) mixture powders at temperatures above 400 °C prevents the occurrence of 123 decomposition in compacted samples during subsequent heat treatment, suggesting that the critical oxygen content in Ag for stabilizing the 123 compound to be no higher than 10−3 at. % (the oxygen saturation solubility at 400 °C). The findings may have implications for the processing of other Ba-containing high-Tc superconducting oxides as well.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Fujimoto, H., Murakami, M., Oyama, T., Shiohara, Y., Koshizuka, N., and Tanaka, S., Jpn. J. Appl. Phys. 29, L1793 (1990).CrossRefGoogle Scholar
2Crabtree, G. W., Downey, J. W., Flandermeyer, B. K., Jorgensen, J. D., Klippert, T. E., Kupperman, D. S., Kwok, W. K., Lam, D. J., Mitchell, A. W., McKale, A.G., Nevitt, M. V., Nowicki, L. J., Paulikas, A. P., Poeppel, R. B., Rothman, S. J., Routbort, J. L., Singh, J. P., Sowers, C. H., Umezawa, A., Veal, B. W., and Baker, J. E., Adv. Ceram. Mater. 2(3B), 444 (1987).CrossRefGoogle Scholar
3Cook, R. F., Shaw, T. M., and Duncombe, P. R., Adv. Ceram. Mater. 2(3B), 444 (1987).Google Scholar
4Peterson, G. G., Weinberger, B. R., Lynds, L., and Krasinski, H. A., J. Mater. Res. 3, 605 (1988).CrossRefGoogle Scholar
5Singh, J. P., Leu, H. J., Poeppel, R. B., Van Voorhees, E., Goudey, G. T., Winsley, K., and Shi, D., J. Appl. Phys. 66, 3154 (1989).CrossRefGoogle Scholar
6Prasad, R., Soni, N. C., Mohan, A., Khera, S. K., Nair, K. U., and Gupta, C. K., Mater. Lett. 7, 9 (1988).CrossRefGoogle Scholar
7Wei, W. C. and Lee, W. H., Jpn. J. Appl. Phys. 31, 1305 (1992).CrossRefGoogle Scholar
8Singh, J. P., Shi, D., and Capone, D. W., Appl. Phys. Lett. 53, 237 (1988).CrossRefGoogle Scholar
9Shi, D., Xu, M., Chen, J. G., Umezawa, A., Lanan, S. G., Miller, D., and Goretta, K. C., Mater. Lett. 9, 1 (1989).Google Scholar
10Nishio, T., Itoh, Y., Ogasawara, F., Suganuma, M., Yamada, Y., and Mizutani, U., J. Mater. Sci. 24, 3228 (1989).CrossRefGoogle Scholar
11Dwir, B., Affronte, M., and Pavuna, D., Appl. Phys. Lett. 55, 399 (1989).CrossRefGoogle Scholar
12Plechacek, V., Landa, V., Blazek, Z., Sneider, J., Trejbalova, Z., and Cermak, M., Physica C 153–155, 878 (1988).CrossRefGoogle Scholar
13Imanka, N., Saito, F., Imai, H., and Adachi, G., Jpn. J. Appl. Phys. 28, L580 (1989).CrossRefGoogle Scholar
14Pavuna, D., Berger, H., Affronte, M., Vandermass, J., Caponi, J. J., Guillot, M., Lejay, P., and Tholence, J. L., Solid State Commun. 68, 535 (1988).CrossRefGoogle Scholar
15Pavuna, D., Berger, H., Tholence, J. L., Affronte, M., Sanjines, R., Dubas, A., Bugnon, Ph., and Vasey, F., Physica C 153–155, 1339 (1988).CrossRefGoogle Scholar
16Malik, M. K., Nair, V. D., Biswas, A. R., Raghavan, R. V., Chadahn, P., Mishra, P. K., Kumat, G. R., and Dasannacharya, B. A., Appl. Phys. Lett. 52, 1525 (1988).CrossRefGoogle Scholar
17Jin, S., Sherwood, R. C., Tiefel, T. H., van Dover, R.R., and Johnson, D.W. Jr., Appl. Phys. Lett. 51, 3 (1987).Google Scholar
18Huang, C. Y., Tsi, H. H., and Wu, M. K., Mod. Phys. Lett. B 3, 525 (1989).CrossRefGoogle Scholar
19Plechacek, V., Landa, V., Blazek, Z., Trejbalova, Z., and Cerms, M., Physica C 153–155, 878 (1988).CrossRefGoogle Scholar
20Goyal, A., Burns, S. J., and Funkenbusch, P. D., Physica C 168, 405 (1990).CrossRefGoogle Scholar
21Itoh, M., Ishigaki, H., Ohyama, T., Minemoto, T., Nojiri, H., and Motokawa, M., J. Mater. Res. 6, 2272 (1991).CrossRefGoogle Scholar
22Wu, N-L., Wei, T-C., Hou, S-Y., and Wong, S-Y., J. Mater. Res. 5, 2056 (1990).CrossRefGoogle Scholar
23Metals Reference Book, edited by Smithells, C. J. and Brandes, A., 5th ed. (Butterworth, London and Boston, 1976), p. 852.Google Scholar
24Loehman, R. E., Tomsia, A. P., Pask, J. A., and Carim, A. H., Physica C 170, 1 (1990).CrossRefGoogle Scholar
25Bruzzone, G., Ferretti, M., and Merlo, F., J. Less-Comm. Metals 128, 259 (1987).CrossRefGoogle Scholar
26Deslandes, F., Raveau, B., Dubots, P., and Legat, D., Solid State Commun. 71, 407 (1989).CrossRefGoogle Scholar
27Binary Alloy Phase Diagrams, edited by Massalski, T. B., Murray, J. L., Bennett, L. H., and Baker, H. (American Society for Metals, Metals Park, OH, 1986), p. 19.Google Scholar