Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T05:52:58.007Z Has data issue: false hasContentIssue false

Stability of single-wall carbon nanotubes under hydrothermal conditions

Published online by Cambridge University Press:  31 January 2011

S. Srikanta Swamy
Affiliation:
Research Institute for Solvothermal Technology, 2217–43 Hayashi, Takamatsu, Kagawa, 761–0301, Japan
Jose Maria Calderon-Moreno
Affiliation:
Center for Materials Design, Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagasuta, Midori-ku, Yokohama 2226–8503, Japan
Masahiro Yoshimura
Affiliation:
Center for Materials Design, Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagasuta, Midori-ku, Yokohama 2226–8503, Japan
Get access

Abstract

The stability of single-wall carbon nanotubes under hydrothermal conditions (100 MPa pressure, from 30 min to 48 h in the temperature range from 200 to 800 °C) has been investigated. The resultant products were characterized by Raman spectroscopy, x-ray diffraction, and transmission electron microscopy. The stability range of single-wall carbon nanotubes (SWCNTs) under hydrothermal conditions suggests that they, similar to fullerenes, can only survive mild and short-term treatment in high-temperature, high-pressure water. SWCNTs gradually transform into multiwall carbon nanotubes (MWCNTs) and polyhedral graphitic nanoparticules. After 48 h at 750 °C only the Raman spectra characteristic of graphitic carbon were observed. Transmission electron microscopy revealed that after 800 °C and 48 h of treatment SWCNTs fully transformed into MWCNTs and polyhedral carbon nanoparticles.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., and Smalley, R.E., Nature 318, 162 (1985).CrossRefGoogle Scholar
2Iijima, S., Nature 354, 56 (1991).CrossRefGoogle Scholar
3Livingston, K., Science., 268, 1637 (1995).CrossRefGoogle Scholar
4Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rintzler, A.G., Colbert, D.T., Scuseria, G., Tomanek, D., Fischer, J.E., and Smalley, R.E., Science 273, 483 (1996).CrossRefGoogle Scholar
5Dresselhaus, M.S., Dresselhaus, G., and Eklund, P.C., Science of Fullerene and Carbon Nanotubes (Academic Press, New York, 1996).Google Scholar
6Dresselhaus, M.S. and Dresselhaus, G., Annu. Rev. Mater. Sci. 25, 487 (1995).CrossRefGoogle Scholar
7Saito, R., Fujita, M., Dresselhaus, M.S., and Dresselhaus, G., Appl. Phys. Lett., 60, 2204 (1992).CrossRefGoogle Scholar
8Tanaka, K., Yamabe, T., and Fukui, K., The Science and Technology of Carbon Nanotubes (Elsevier, Amsterdam, The Netherlands, 1999).Google Scholar
9Ajayan, P.M. and Iijima, S., Nature 361, 333 (1993).CrossRefGoogle Scholar
10Dillon, A.C., Jones, K.M., Bekkadahl, T.A., Kiang, C.H., Bethune, D.S., and Heben, M.J., Nature 386, 377 (1997).CrossRefGoogle Scholar
11Dekker, C., Physics Today 52, 22 (1999).CrossRefGoogle Scholar
12Kong, J., Sog, H.T., Cassell, A.M., Quate, C.F., and Dai, H., Nature 395, 878 (1998).CrossRefGoogle Scholar
13Lefebvre, J., Lynch, J.F., Llaguno, M., Radosavljevic, M., and Johnson, A.T., Appl. Phys. Lett. 75, 3014 (1999).CrossRefGoogle Scholar
14Takahashi, H., Jeydevan, B., Tohji, K., Matsuoka, I., Kasuya, A., Nishina, Y., and Nirasawa, T., Proc. Electrochem. Soc. 96–10, 72 (1996).Google Scholar
15Takahashi, H., Goto, T., Akiyama, Y., Jeyadevan, B., Tohji, K., and Matosuka, I., Mater. Sci. Eng. A 217/218, 42 (1996).CrossRefGoogle Scholar
16Tohji, K., Goto, T., Takahashi, H., Shindo, Y., Shimizu, N., Jeyadevan, B., and Matsuoka, I., Nature 383, 679 (1996).CrossRefGoogle Scholar
17Tohji, K., Takahashi, H., Shinoda, Y., Jeyadevan, B., Matsuoka, I., Saito, Y., Kasuya, A., Ito, S., and Nishina, Y., J. Phys. Chem. 101(11), 1974 (1997).CrossRefGoogle Scholar
18Liu, J., Rinzler, A.G., Dai, H., Hafner, J.H., Bradley, R.K., Boul, P.J., Lu, A., Iverson, T., Shelimov, K., Huffman, C.B., Rodriguez-Macias, F., Shion, Y.S., Lee, T.R., Colbert, D.T., and Smalley, R.E., Science 280, 1253 (1998).CrossRefGoogle Scholar
19Suchanek, W.L., Yoshimura, M., and Gogotsi, Y.G., J. Mater. Res. 14, 322 (1999).CrossRefGoogle Scholar
20Saito, R., Dresselhaus, G., and Dresselhaus, M.S., Physical Properties of Carbon Nanotube (Imperial College Press, London, United Kingdom, 1998).CrossRefGoogle Scholar
21Pimenta, M.A., Marucci, A., Brown, S.D.M., Mathews, M.J., Rao, A.M., Eklund, P.C., Smalley, R.E., Dresselhus, G., and Dresselhaus, M.S., J. Mater. Res. 13, 2396 (1998).Google Scholar
22Chapell, M. Lamy de la, Lefrant, S., Journet, C., Maser, W., and Bernier, P., Carbon 36, 705 (1998).CrossRefGoogle Scholar
23Rao, A.M., Bandow, S., Richter, E., and Eklund, P.C., Thin Solid Films 331, 141 (1998).CrossRefGoogle Scholar
24Pelletier, M.J., Analytical Applications of Raman Spectroscopy, (Blackwell Science, Oxford, United Kingdom, 1999).Google Scholar
25Ivanov, V., Fonseca, A., Nagy, J.B., Lucas, A., Lambin, P., Bernaerts, D., and Zhang, X.B., Carbon 33(12), 1727 (1995).CrossRefGoogle Scholar
26Gogotsi, Y.G., Libera, J., and Yoshimura, M., J. Mater. Res. 15,2591 (2000).CrossRefGoogle Scholar
27Osawa, E., Fullerene Sci. Technol., 7.N4, 637 (1999).Google Scholar