Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T07:14:25.673Z Has data issue: false hasContentIssue false

Stability of shear banding process in bulk metallic glasses and composites

Published online by Cambridge University Press:  12 July 2017

Yusheng Qin
Affiliation:
School of Mechanical, Electrical & Information Engineering, Shandong University (Weihai), Weihai 264209, People’s Republic of China
Xiaoliang Han
Affiliation:
School of Mechanical, Electrical & Information Engineering, Shandong University (Weihai), Weihai 264209, People’s Republic of China
Kaikai Song*
Affiliation:
School of Mechanical, Electrical & Information Engineering, Shandong University (Weihai), Weihai 264209, People’s Republic of China
Li Wang*
Affiliation:
School of Mechanical, Electrical & Information Engineering, Shandong University (Weihai), Weihai 264209, People’s Republic of China
Yun Cheng
Affiliation:
School of Mechanical, Electrical & Information Engineering, Shandong University (Weihai), Weihai 264209, People’s Republic of China
Zequn Zhang
Affiliation:
School of Mechanical, Electrical & Information Engineering, Shandong University (Weihai), Weihai 264209, People’s Republic of China
Qisen Xue
Affiliation:
School of Mechanical, Electrical & Information Engineering, Shandong University (Weihai), Weihai 264209, People’s Republic of China
Nianzhen Sun
Affiliation:
School of Mechanical, Electrical & Information Engineering, Shandong University (Weihai), Weihai 264209, People’s Republic of China
Jianguo Wang
Affiliation:
School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan 243002, People’s Republic of China
Baoan Sun
Affiliation:
Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, People’s Republic of China
Baran Sarac
Affiliation:
Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Leoben A-8700, Austria
Florian Spieckermann
Affiliation:
Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Leoben A-8700, Austria; and Department Materials Physics, Montanuniversität Leoben, Leoben A-8700, Austria
Gang Wang
Affiliation:
Laboratory for Microstructures, Shanghai University, Shanghai 200444, People’s Republic of China
Ivan Kaban
Affiliation:
IFW Dresden, Institute for Complex Materials, Dresden D-01069, Germany
Jürgen Eckert
Affiliation:
Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Leoben A-8700, Austria; and Department Materials Physics, Montanuniversität Leoben, Leoben A-8700, Austria
*
a) Address all correspondence to these authors. e-mail: [email protected]
b) e-mail: [email protected]
Get access

Abstract

The shear-band propagation in bulk metallic glasses (BMGs) during deformation plays a key role in determining their macroscopic ductility. In this work, the shear band propagation during plastic deformation was investigated in the Cu46Zr46Al8 BMG and its in situ or ex situ prepared BMG composites. Compared with the brittle BMG, both types of ductile BMG composites show a more stable shear banding behavior as revealed by a larger power-law scaling exponent obtained from statistical analysis of serrations recorded in compressive curves. A higher cut-off elastic energy density (δc) linked with the multiplication of shear bands is observed for the in situ prepared BMG composites. However, the ex situ fabricated BMG composites show an almost equivalent or slightly larger δc since the dominant shear band but not multiple shear bands mainly governs their deformation. Such observations imply that the shear banding stability of BMGs during deformation is enhanced not only by inducing multiple shear bands but also by obstructing the movement of the dominant shear band at its driven path.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

c)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Contributing Editor: Mathias Göken

References

REFERENCES

Eckert, J., Das, J., Pauly, S., and Duhamel, C.: Mechanical properties of bulk metallic glasses and composites. J. Mater. Res. 22, 285301 (2007).CrossRefGoogle Scholar
Cheng, Y.Q. and Ma, E.: Atomic-level structure and structure-property relationship in metallic glasses. Prog. Mater. Sci. 56, 379473 (2011).CrossRefGoogle Scholar
Thurnheer, P., Maaß, R., Laws, K.J., Pogatscher, S., and Löffler, J.F.: Dynamic properties of major shear bands in Zr–Cu–Al bulk metallic glasses. Acta Mater. 96, 428436 (2015).CrossRefGoogle Scholar
Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 4256 (1999).CrossRefGoogle Scholar
Sun, B.A. and Wang, W.H.: The fracture of bulk metallic glasses. Prog. Mater. Sci. 74, 211307 (2015).CrossRefGoogle Scholar
Greer, A.L., Cheng, Y.Q., and Ma, E.: Shear bands in metallic glasses. Mater. Sci. Eng., R 74, 71132 (2013).CrossRefGoogle Scholar
Schuh, C.A., Hufnagel, T.C., and Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 40674109 (2007).CrossRefGoogle Scholar
Lewandowski, J.J., Wang, W.H., and Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 7787 (2005).CrossRefGoogle Scholar
Tan, J., Zhang, Y., Sun, B.A., Stoica, M., Li, C.J., Song, K.K., Kühn, U., Pan, F.S., and Eckert, J.: Correlation between internal states and plasticity in bulk metallic glass. Appl. Phys. Lett. 98, 151906–151903 (2011).CrossRefGoogle Scholar
Klaumünzer, D., Maaß, R., and Löffler, J.F.: Stick-slip dynamics and recent insights into shear banding in metallic glasses. J. Mater. Res. 26, 14531463 (2011).CrossRefGoogle Scholar
Scudino, S., Surreddi, K.B., Wang, G., and Eckert, J.: Enhanced plastic deformation of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass by the optimization of frictional boundary restraints. Scr. Mater. 62, 750753 (2010).CrossRefGoogle Scholar
Wu, W.F., Li, Y., and Schuh, C.A.: Strength, plasticity and brittleness of bulk metallic glasses under compression: Statistical and geometric effects. Philos. Mag. 88, 7189 (2008).CrossRefGoogle Scholar
Li, J.J., Qiao, J.W., Dahmen, K.A., Yang, W.M., Shen, B.L., and Chen, M.W.: Universality of slip avalanches in a ductile Fe-based bulk metallic glass. J. Iron Steel Res. Int. 24, 366371 (2017).CrossRefGoogle Scholar
Wang, Z., Qiao, J.W., Tian, H., Sun, B.A., Wang, B.C., Xu, B.S., and Chen, M.W.: Composition mediated serration dynamics in Zr-based bulk metallic glasses. Appl. Phys. Lett. 107, 201902 (2015).CrossRefGoogle Scholar
Thurnheer, P., Haag, F., and Löffler, J.F.: Time-resolved measurement of shear-band temperature during serrated flow in a Zr-based metallic glass. Acta Mater. 115, 468474 (2016).CrossRefGoogle Scholar
Qu, R.T., Liu, Z.Q., Wang, G., and Zhang, Z.F.: Progressive shear band propagation in metallic glasses under compression. Acta Mater. 91, 1933 (2015).CrossRefGoogle Scholar
Qiao, J.C., Yao, Y., Pelletier, J.M., and Keer, L.M.: Understanding of micro-alloying on plasticity in Cu46Zr47−x Al7Dy x (0 ≤ x ≤ 8) bulk metallic glasses under compression: Based on mechanical relaxations and theoretical analysis. Int. J. Plast. 82, 6275 (2016).CrossRefGoogle Scholar
Liu, Y.H., Wang, G., Wang, R.J., Zhao, D.Q., Pan, M.X., and Wang, W.H.: Super plastic bulk metallic glasses at room temperature. Science 315, 13851388 (2007).CrossRefGoogle ScholarPubMed
Sun, B.A., Yu, H.B., Jiao, W., Bai, H.Y., Zhao, D.Q., and Wang, W.H.: Plasticity of ductile metallic glasses: A self-organized critical state. Phys. Rev. Lett. 105, 035501 (2010).CrossRefGoogle ScholarPubMed
Sun, B.A., Pauly, S., Hu, J., Wang, W.H., Kühn, U., and Eckert, J.: Origin of intermittent plastic flow and instability of shear band sliding in bulk metallic glasses. Phys. Rev. Lett. 110, 225501 (2013).CrossRefGoogle ScholarPubMed
Schroers, J. and Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004).CrossRefGoogle ScholarPubMed
Kajiwara, S.: Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys. Mater. Sci. Eng., A 273–275, 6788 (1999).CrossRefGoogle Scholar
Song, K.K., Pauly, S., Sun, B.A., Tan, J., Stoica, M., Kühn, U., and Eckert, J.: Correlation between the microstructures and the deformation mechanisms of CuZr-based bulk metallic glass composites. AIP Adv. 3, 012116012118 (2013).CrossRefGoogle Scholar
Pauly, S., Das, J., Bednarčik, J., Mattern, N., Kim, K.B., Kim, D.H., and Eckert, J.: Deformation-induced martensitic transformation in Cu–Zr–(Al,Ti) bulk metallic glass composites. Scr. Mater. 60, 431434 (2009).CrossRefGoogle Scholar
Qiao, J.W., Jia, H.L., and Liaw, P.K.: Metallic glass matrix composites. Mater. Sci. Eng., R 100, 169 (2016).CrossRefGoogle Scholar
Todinov, M.T.: Influence of some parameters on the residual stresses from quenching. Modell. Simul. Mater. Sci. Eng. 7, 2541 (1999).CrossRefGoogle Scholar
Song, K.K., Wu, D.Y., Pauly, S., Peng, C.X., Wang, L., and Eckert, J.: Thermal stability of B2 CuZr phase, microstructural evolution and martensitic transformation in Cu–Zr–Ti alloys. Intermetallics 67, 177184 (2015).CrossRefGoogle Scholar
Wu, D.Y., Song, K.K., Cao, C.D., Li, R., Wang, G., Wu, Y., Wan, F., Ding, F.L., Shi, Y., Bai, X.J., Kaban, I., and Eckert, J.: Deformation-induced martensitic transformation in Cu–Zr–Zn bulk metallic glass composites. Metals 5, 21342147 (2015).CrossRefGoogle Scholar
Song, K.K., Pauly, S., Zhang, Y., Li, R., Gorantla, S., Narayanan, N., Kühn, U., Gemming, T., and Eckert, J.: Triple yielding and deformation mechanisms in metastable Cu47.5Zr47.5Al5 composites. Acta Mater. 60, 60006012 (2012).CrossRefGoogle Scholar
Wang, G., Chan, K.C., Xia, L., Yu, P., Shen, J., and Wang, W.H.: Self-organized intermittent plastic flow in bulk metallic glasses. Acta Mater. 57, 61466155 (2009).CrossRefGoogle Scholar
Qiao, J.W., Zhang, Y., and Liaw, P.K.: Serrated flow kinetics in a Zr-based bulk metallic glass. Intermetallics 18, 20572064 (2010).CrossRefGoogle Scholar
Tong, X., Wang, G., Yi, J., Ren, J.L., Pauly, S., Gao, Y.L., Zhai, Q.J., Mattern, N., Dahmen, K.A., Liaw, P.K., and Eckert, J.: Shear avalanches in plastic deformation of a metallic glass composite. Int. J. Plast. 77, 141155 (2016).CrossRefGoogle Scholar
Pan, X.F., Zhang, H., Zhang, Z.F., Stoica, M., He, G., and Eckert, J.: Vickers hardness and compressive properties of bulk metallic glasses and nanostructure-dendrite composites. J. Mater. Res. 20, 26322638 (2011).CrossRefGoogle Scholar
Malandro, D.L. and Lacks, D.J.: Relationships of shear-induced changes in the potential energy landscape to the mechanical properties of ductile glasses. J. Chem. Phys. 110, 45934601 (1999).CrossRefGoogle Scholar
Csikor, F.F., Motz, C., Weygand, D., Zaiser, M., and Zapperi, S.: Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. Science 318, 251254 (2007).CrossRefGoogle ScholarPubMed
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 193 (2014).CrossRefGoogle Scholar
Argon, A.S.: Plastic deformation in metallic glasses. Acta Metall. 27, 4758 (1979).CrossRefGoogle Scholar
Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407415 (1977).CrossRefGoogle Scholar
Falk, M.L. and Langer, J.S.: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57, 71927205 (1998).CrossRefGoogle Scholar
Langer, J.S.: Dynamics of shear-transformation zones in amorphous plasticity: Formulation in terms of an effective disorder temperature. Phys. Rev. E 70, 041502 (2004).CrossRefGoogle ScholarPubMed
Song, S.X., Bei, H., Wadsworth, J., and Nieh, T.G.: Flow serration in a Zr-based bulk metallic glass in compression at low strain rates. Intermetallics 16, 813818 (2008).CrossRefGoogle Scholar
Chen, M.: Mechanical behavior of metallic glasses: Microscopic understanding of strength and ductility. Annu. Rev. Mater. Res. 38, 445469 (2008).CrossRefGoogle Scholar
Han, Z. and Li, Y.: Cooperative shear and catastrophic fracture of bulk metallic glasses from a shear-band instability perspective. J. Mater. Res. 24, 36203627 (2011).CrossRefGoogle Scholar
Liu, Z.Y., Yang, Y., and Liu, C.T.: Critical shear offset of fracture in a Zr-based metallic glass. J. Iron Steel Res. Int. 23, 5356 (2016).CrossRefGoogle Scholar
Wu, F.F., Zhang, Z.F., and Mao, S.X.: Size-dependent shear fracture and global tensile plasticity of metallic glasses. Acta Mater. 57, 257266 (2009).CrossRefGoogle Scholar
Dragoi, D., Üstündag, E., Clausen, B., and Bourke, M.A.M.: Investigation of thermal residual stresses in tungsten-fiber/bulk metallic glass matrix composites. Scr. Mater. 45, 245252 (2001).CrossRefGoogle Scholar
Khaund, A.K., Krstic, V.D., and Nicholson, P.S.: Influence of elastic and thermal mismatch on the local crack-driving force in brittle composites. J. Mater. Sci. 12, 22692273 (1977).CrossRefGoogle Scholar
Khaund, A.K. and Nicholson, P.S.: Fracture of a brittle composite: Influence of elastic mismatch and interfacial bonding. J. Mater. Sci. 15, 177187 (1980).CrossRefGoogle Scholar
Fitzpatrick, M.E., Hutchings, M.T., and Withers, P.J.: Separation of macroscopic, elastic mismatch and thermal expansion misfit stresses in metal matrix composite quenched plates from neutron diffraction measurements. Acta Mater. 45, 48674876 (1997).CrossRefGoogle Scholar
Liu, Z., Li, R., Wang, G., Wu, S., Lu, X., and Zhang, T.: Quasi phase transition model of shear bands in metallic glasses. Acta Mater. 59, 74167424 (2011).CrossRefGoogle Scholar
Dalla Torre, F.H., Dubach, A., Schällibaum, J., and Löffler, J.F.: Shear striations and deformation kinetics in highly deformed Zr-based bulk metallic glasses. Acta Mater. 56, 46354646 (2008).CrossRefGoogle Scholar
Lewandowski, J.J. and Greer, A.L.: Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 1518 (2006).CrossRefGoogle Scholar
Sun, B.A., Pauly, S., Tan, J., Stoica, M., Wang, W.H., Kühn, U., and Eckert, J.: Serrated flow and stick-slip deformation dynamics in the presence of shear-band interactions for a Zr-based metallic glass. Acta Mater. 60, 41604171 (2012).CrossRefGoogle Scholar
Koval, Y.N., Firstov, G.S., and Kotko, A.V.: Martensitic-transformation and shape memory effect in ZrCu intermetallic compound. Scr. Metall. Mater. 27, 16111616 (1992).CrossRefGoogle Scholar
Gunkelmann, N., Bringa, E.M., Kang, K., Ackland, G.J., Ruestes, C.J., and Urbassek, H.M.: Polycrystalline iron under compression: Plasticity and phase transitions. Phys. Rev. B 86, 27332737 (2012).CrossRefGoogle Scholar
Ahlers, M., Pascual, R., Rapacioli, R., and Arneodo, W.: Transformation hardening and energy dissipation in martensitic β-brass. Mater. Sci. Eng. 27, 4955 (1977).CrossRefGoogle Scholar
Planes, A., Macqueron, J.L., and Ortín, J.: Energy contributions in the martensitic transformation of shape-memory alloys. Philos. Mag. Lett. 57, 291298 (1988).CrossRefGoogle Scholar
Boyd, J.G. and Lagoudas, D.C.: A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy. Int. J. Plast. 12, 805842 (1996).CrossRefGoogle Scholar
Sun, B.A., Chen, S.H., Lu, Y.M., Zhu, Z.G., Zhao, Y.L., Yang, Y., Chan, K.C., and Liu, C.T.: Origin of shear stability and compressive ductility enhancement of metallic glasses by metal coating. Sci. Rep. 6, 27852 (2016).CrossRefGoogle ScholarPubMed
Qiu, K.Q., Wang, A.M., Zhang, H.F., Ding, B.Z., and Hu, Z.Q.: Mechanical properties of tungsten fiber reinforced ZrAlNiCuSi metallic glass matrix composite. Intermetallics 10, 12831288 (2002).CrossRefGoogle Scholar
Conner, R.D., Dandliker, R.B., and Johnson, W.L.: Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites. Acta Mater. 46, 60896102 (1998).CrossRefGoogle Scholar
Lee, S.Y., Clausen, B., Üstündag, E., Choi-Yim, H., Aydiner, C.C., and Bourke, M.A.M.: Compressive behavior of wire reinforced bulk metallic glass matrix composites. Mater. Sci. Eng., A 399, 128133 (2005).CrossRefGoogle Scholar
Supplementary material: File

Qin supplementary material

Figures S1-S3

Download Qin supplementary material(File)
File 3.2 MB