Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T11:05:41.743Z Has data issue: false hasContentIssue false

Stability of monoclinic and tetragonal zirconia at low oxygen partial pressure

Published online by Cambridge University Press:  31 January 2011

Niels Mommer
Affiliation:
Department of Physics, Oregon State University, Corvallis, Oregon 97331
Theresa Lee
Affiliation:
Department of Physics, Oregon State University, Corvallis, Oregon 97331
John A. Gardner
Affiliation:
Department of Physics, Oregon State University, Corvallis, Oregon 97331
Get access

Abstract

We have found that both tetragonal and monoclinic zirconia annealed at temperaturess in the range of 1100 to 1300 °C in atmospheres of low oxygen partial pressures (down to 10−26 Pa) transform slowly to an apparently cubic phase. The transformation can be reversed by increasing the oxygen partial pressure sufficiently, i.e., exposing the sample to air again. These observations were made by 111In/Cd perturbed angular correlation (PAC) measurements of undoped zirconia samples. Upon annealing under various reducing atmospheres PAC spectra show a steadily increasing fraction of Cd probe atoms in a locally cubic environment with the fraction of probe atoms in tetragonal or monoclinic sites decreasing accordingly.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ryshkewitz, E. and Richardson, D.W., Oxyde Ceramics. Physical Chemistry and Technology (General Ceramics, Haskell, NJ, 1985).Google Scholar
2.Zirconia '88. Advances in Zirconia Science and Technology, edited by Meriani, S. (Elsevier, New York, 1989).CrossRefGoogle Scholar
3.Howard, C.J., Hill, R.J., and Reichert, B.E., Acta Crystallogr., Sect. B: Struct. Sci. 44, 116 (1988).CrossRefGoogle Scholar
4.Teufer, G., Acta Crystallogr. 15, 1187 (1962).CrossRefGoogle Scholar
5.Wyckoff, R.W.G, Crystal Structures, 2nd ed. (Wiley, New York, 1963), Vol. 1.Google Scholar
6.Ohtaka, O., Yamanaka, T., Kume, A.S., Ito, E., and Navrotsky, A., J. Am. Ceram. Soc. 74, 505 (1991).CrossRefGoogle Scholar
7.Leger, J.M., Tomaszewski, P.E., Atouf, A., and Pereira, A.S., Phys. Rev. B 47, 14075 (1993).CrossRefGoogle Scholar
8.Rauh, E.G. and Garg, S.P., J. Am. Ceram. Soc. 63, 239 (1980).CrossRefGoogle Scholar
9.Ruh, R. and Garrett, H.J., J. Am. Ceram. Soc. 50, 257 (1967).CrossRefGoogle Scholar
10.Nicholson, P., J. Am. Ceram. Soc. 54, 52 (1971).CrossRefGoogle Scholar
11.Wang, W-E. and Olander, D.R., J. Am. Ceram. Soc. 76, 1242 (1993).CrossRefGoogle Scholar
12.Jaeger, H., Gardner, J.A., Haygarth, J.C., and Rasera, R.L., J. Am. Ceram. Soc. 69, 458 (1986).CrossRefGoogle Scholar
13.Su, H-T., Wang, R., Fuchs, H., Gardner, J.A., Evenson, W.E., and Sommers, J.A., J. Am. Ceram. Soc. 73, 3215 (1990).CrossRefGoogle Scholar
14.Mommer, N., Lee, T., Gardner, J.A., and Evenson, W.E., Phys. Rev. B 61, 162 (2000).CrossRefGoogle Scholar
15.Gardner, J.A., Lee, T., Mommer, N., Karapetrova, E., Zacate, M.O., Platzer, R., Evenson, W.E., and Sommers, J.A., Hyperfine Interactions 120, 87 (1999).CrossRefGoogle Scholar
16.Stubican, V.S., in Science and Technology of Zirconia III, edited by Somiya, S., Yamamoto, N., Yanagida, H. (The American Ceramic Society, Westerville, 1988) Vol. 24, p. 71.Google Scholar
17.Collongues, R., Gilles, J.C., Lejus, A.M., Perez, M., Jorba, Y., and Michel, D., Mater. Res. Bull. 2, 837 (1967).CrossRefGoogle Scholar
18.Lerch, M. and Rahäuser, O., J. Mater. Sci. 32, 1357 (1997).CrossRefGoogle Scholar
19.Frauenfelder, H. and Steffen, R.M., in Alpha-, Beta- and Gamma-Ray Spectroscopy, edited by Siegbahn, K. (North-Holland, Amsterdam, Netherlands, 1965), Vol. 2, Chap. XIX A, pp. 997998.Google Scholar
20.Li, P., Chen, J., and Penner-Hahn, J., J. Am. Ceram. Soc. 77, 118, 128 (1994).Google Scholar
21.Catlow, C.R.A, Chadwick, A.V., Greaves, G.N., and Moroney, L.M., J. Am. Ceram. Soc. 69, 272 (1993).CrossRefGoogle Scholar
22.Yoshimura, M., Ceram. Bull. 67, 1950 (1988).Google Scholar
23.Murakami, Y., Nagano, I., and Yamamoto, H., J. Mater. Sci. Lett. 16, 1686 (1997).CrossRefGoogle Scholar
24.Yashima, M., Kakihana, M., and Yoshimura, M., Solid State Ionics 86–88, 1131 (1996).CrossRefGoogle Scholar