Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T00:42:58.591Z Has data issue: false hasContentIssue false

The stabilities and electronic structures of Aln Si12−n N12 (n = 0, 1, 2, and 4)

Published online by Cambridge University Press:  07 January 2016

Huihui Yang
Affiliation:
College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
Hongshan Chen*
Affiliation:
College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Aln Si12−n N12 (n = 0, 1, 2, and 4) are electron redundant systems. The calculations show that the stabilities of Aln Si12−n N12 and Al12N12 are very close. One Si atom in each Si2N2 square protrudes obviously and the cages are distorted. The excess electrons reside at the outside of the protrudent Si atoms as lone pair electrons. They occupy antibonding orbitals and form the highest occupied band. The Si–N bonds are covalent bonds with strong polarity. The overlap integral is 0.38 per Si–N bond and is 17% stronger than the overlap in Al12N12. The atoms in molecule charge on the in-plane and protrudent Si atoms are 3.13e and 1.65e, respectively. The lone pair electrons form large local dipole moments enhance the electrostatic interaction between the protrudent Si and N atoms. The energy gaps of the electron redundant cages Aln Si12−n N12 (n = 0, 1, 2, and 4) are about 1 eV smaller than the gap of Al12N12. As the lone pair electrons are loosely bond, the SiN-based cages have large hyper-polarizabilities and so have potential applications, such as nonlinear optical materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chopra, N.G., Luyren, R.J., Cherry, K., Crespi, V.H., Cohen, M.L., Louis, S.G., and Zettl, A.: Boron nitride nanotubes. Science 269, 966 (1995).Google Scholar
Feldman, Y., Wasserman, E., Srolovit, D.J., and Tenne, R.: High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222 (1995).Google Scholar
Beheshtian, J., Bagheri, Z., Kamfiroozi, M., and Ahmadi, A.: A comparative study on the B12N12, Al12N12, B12P12 and Al12P12 fullerene-like cages. J. Mol. Model. 18, 2653 (2012).Google Scholar
Golberg, D., Bando, Y., Stéphan, O., and Kurashima, K.: Octahedral boron nitride fullerenes formed by electron beam irradiation. Appl. Phys. Lett. 73, 2441 (1998).Google Scholar
Golberg, D., Bando, Y., Kurashima, K., and Sato, T.: Synthesis and characterization of ropes made of BN multiwalled nanotubes. Scr. Mater. 44, 1561 (2001).Google Scholar
Loiseau, A., Willaime, F., Demoncy, N., Hug, G., and Pascard, H.: Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. Phys. Rev. Lett. 76, 4737 (1996).Google Scholar
Vurgaftman, I., Meyer, J.R., and Ram-Mohan, L.R.: Band parameters for III–V compound semiconductors and their alloys. Appl. Phys. Rev. 89, 5815 (2001).Google Scholar
Lourie, O.R., Jones, C.R., Bartlett, B.M., Gibbons, P.C., Ruoff, R.S., and Buhro, W.E.: CVD growth of boron nitride nanotubes. Chem. Mater. 12, 1808 (2000).Google Scholar
Srivastava, D., Menon, M., and Cho, K.: Anisotropic nanomechanics of boron nitride nanotubes: Nanostructured “skin” effect. Phys. Rev. B 63, 195413 (2001).Google Scholar
Wu, Q., Hu, Z., Wang, X.Z., Lu, Y.N., Chen, X., Xu, H., and Chen, Y.: Synthesis and characterization of faceted hexagonal aluminum nitride nanotubes. J. Am. Chem. Soc. 125, 10176 (2003).Google Scholar
Liu, C., Hu, Z., Wu, Q., Wang, X.Z., Chen, Y., Sang, H., Zhu, J.M., Deng, S.Z., and Xu, N.S.: Vapor–solid growth and characterization of aluminum nitride nanocones. J. Am. Chem. Soc. 127, 1318 (2005).Google Scholar
Lei, M., Yang, H., Li, P.G., and Tang, W.H.: Synthesis and characterization of straight and stacked-sheet AlN nanowires with high purity. J. Alloys Compd. 459, 338 (2008).Google Scholar
Lei, W.W., Liu, D., Zhang, J., Zhu, P.W., Cui, Q.L., and Zou, G.T.: Direct synthesis, growth mechanism, and optical properties of 3D AlN nanostructures with urchin shapes. Cryst. Growth Des. 9, 1489 (2009).Google Scholar
Chang, Ch., Patzer, A.B.C., Sedlmayr, E., Steinke, T., and Sülzle, D.: A density functional study of small (AlN)x clusters: Structures, energies and frequencies. Chem. Phys. 271, 283 (2001).Google Scholar
Wu, H.S., Zhang, F.Q., Xu, X.H., Zhang, C.J., and Jiao, H.J.: Geometric and energetic aspects of aluminum nitride cages. J. Phys. Chem. A 107, 204 (2003).Google Scholar
Zhang, D.J. and Zhang, R.Q.: Geometrical structures and electronic properties of AlN fullerenes: A comparative theoretical study of AlN fullerenes with BN and C fullerenes. J. Mater. Chem. 15, 3034 (2005).Google Scholar
Li, J.L., Xia, Y.Y., Zhao, M.W., Liu, X.D., Song, C., Li, L.J., Li, F., and Huang, B.D.: Theoretical prediction for the (AlN)12 fullerene-like cage-based nanomaterials. J. Phys.: Condens. Matter 19, 346228 (2007).Google Scholar
Anafcheh, M., Ghafouri, R., and Naderi, F.: Electronic and chemical characterization of aluminum–nitrogen (AlN) substituted fullerenes: C58AlN to C24Al12N12 . J. Cluster Sci. 24, 327 (2013).Google Scholar
Costales, A., Blanco, M.A., Francisco, E., Martín Pendás, A., and Pandey, R.: First principles study of neutral and anionic (medium-size) aluminum nitride clusters: AlnNn, n = 7–16. J. Phys. Chem. B 110, 4092 (2006).Google Scholar
Zhou, X., Wu, M.M., Zhou, J., and Sun, Q.: Hydrogen storage in Al-N cage based nanostructures. Appl. Phys. Lett. 94, 103105 (2009).Google Scholar
Wang, Q., Sun, Q., Jena, P., and Kawazoe, Y.: Potential of AlN nanostructures as hydrogen storage materials. ACS Nano 3, 621 (2009).Google Scholar
Chen, X., Ma, J., Hu, Z., Wu, Q., and Chen, Y.: AlN nanotube: Round or faceted? J. Am. Chem. Soc. 127, 7982 (2005).Google Scholar
Matxain, J.M., Eriksson, L.A., Mercero, J.M., Lopez, X., Piris, M., Ugalde, J.M., Poater, J., Matito, E., and Solà, M.: New solids based on B12N12 fullerenes. J. Phys. Chem. C 111, 13354 (2007).Google Scholar
Li, J.L., He, T., and Yang, G.W.: An all-purpose building block: B12N12 fullerene. Nanoscale 4, 1665 (2012).CrossRefGoogle ScholarPubMed
Liu, Z.F., Wang, X.Q., Liu, G.B., Zhou, P., Sui, J., Wang, X.F., Zhu, H.J., and Hou, Z.L.: Low-density nanoporous phases of group-III nitrides built from sodalite cage clusters. Phys. Chem. Chem. Phys. 15, 8186 (2013).Google Scholar
Zhang, Y., Gu, H., Suenaga, K., and Iijima, S.: Heterogeneous growth of B-C-N nanotubes by laser ablation. Chem. Phys. Lett. 279, 264 (1997).Google Scholar
Yu, J., Bai, X.D., Ahn, J., Yoon, S.F., and Wang, E.G.: Highly oriented rich boron B–C–N nanotubes by bias-assisted hot filament chemical vapor deposition. Chem. Phys. Lett. 323, 529 (2000).Google Scholar
Wei, X., Wang, M.S., Bando, Y., and Golberg, D.: Electron-beam-induced substitutional carbon doping of boron nitride nanosheets, nanoribbons, and nanotubes. ACS Nano 5, 2916 (2011).Google Scholar
Luo, X.G., Guo, X.J., Liu, Z.Y., He, J.L., Yu, D.L., Xu, B., and Tian, Y.J.: First-principles study of wurtzite BC2N. Phys. Rev. B 76, 092107 (2007).Google Scholar
Kar, T., Čuma, M., and Scheiner, S.: Structure, stability, and bonding of BC2N: an ab initio study. J. Phys. Chem. A 102, 10134 (1998).Google Scholar
Fan, X.F., Zhu, Z.X., Shen, Z.X., and Kuo, J.L.: On the use of bond-counting rules in predicting the stability of C12B6N6 fullerene. J. Phys. Chem. C 112, 15691 (2008).Google Scholar
Chen, Z.F., Ma, K.Q., Zhao, H.X., Pan, Y.M., Zhao, X.Z., Tang, A., and Feng, J.K.: Semi-empirical calculations on the BN substituted fullerenes C60−2x(BN)x (x = 1–3)—Isoelectronic equivalents of C60 . J. Mol. Struct.: THEOCHEM 466, 127 (1999).Google Scholar
Pattanayak, J., Kar, T., and Scheiner, S.: Boron–nitrogen (BN) substitution patterns in C/BN hybrid fullerenes: C60−2x(BN)x (x = 1–7). J. Phys. Chem. A 105, 8376 (2001).Google Scholar
Pattanayak, J., Kar, T., and Scheiner, S.: Boron–nitrogen (BN) substitution of fullerenes: C60 to C12B24N24 CBN ball. J. Phys. Chem. A 106, 2970 (2002).Google Scholar
Zhang, C.Y., Cui, L.Y., Wang, B.Q., Zhang, J., and Lu, J.: Encapsulation of transition metals in aluminum nitride fullerene: TM@(AlN)12 (TM= Ti, Mn, Fe, Co, and Ni). J. Struct. Chem. 53, 1031 (2012).Google Scholar
Wang, G.Z., Yuan, H.K., Kuang, A., Hu, W.F., Zhang, G.L., and Chen, H.: High-capacity hydrogen storage in Li-decorated (AlN)n (n = 12, 24, 36) nanocages. Int. J. Hydrogen Energy 39, 3780 (2014).Google Scholar
Taniyasu, Y. and Kasu, M.: Aluminum nitride deep-ultraviolet light-emitting p-n junction diodes. Diamond Relat. Mater. 17, 1273 (2008).Google Scholar
Taniyasu, Y., Kasu, M., Makimoto, T., and Kobayashi, N.: Triode-type basic display structure using Si-doped AlN field emitters. Phys. Status Solidi A 200, 199 (2003).Google Scholar
Wu, H.L., Zheng, R.S., Liu, W., Meng, S., and Huang, J.Y.: C and Si codoping method for p-type AlN. J. Appl. Phys. 108, 053715 (2010).Google Scholar
Niu, M., Yu, G.T., Yang, G.H., Chen, W., Zhao, X.G., and Huang, X.R.: Doping the alkali atom: An effective strategy to improve the electronic and nonlinear optical properties of the inorganic Al12N12 nanocage. Inorg. Chem. 53, 349 (2014).Google Scholar
Shakerzadeh, E., Barazesh, N., and Talebi, S.Z.: A comparative theoretical study on the structural, electronic and nonlinear optical features of B12N12 and Al12N12 nanoclusters with the groups III, IV and V dopants. Superlattices Microstruct. 76, 264 (2014).Google Scholar
Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993).Google Scholar
Moller, C. and Plesset, M.S.: Note on an approximation treatment for many-electron systems. Phys. Rev. 46, 618 (1934).Google Scholar
Reed, A.E., Weinstock, R.B., and Weinhold, F.: Natural population analysis. J. Chem. Phys. 83, 735 (1985).Google Scholar
Bader, R.F.W.: A quantum theory of molecular structure and its applications. Chem. Rev. 91, 893 (1991).CrossRefGoogle Scholar
Frisch, M.J., Trucks, G.W., and Schlegel, H.B.: Gaussian 03, Revision E.01 (Gaussian, Inc., Wallingford, CT, 2004).Google Scholar
Lu, T. and Chen, F.: Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580 (2012).Google Scholar
Keith, T.A.: 2011 AIMAll 11.12.19 (Overland Park KS: TK Gristmill Software) USA.Google Scholar
Martin, W.C. and Zalubas, R.: Energy levels of aluminum, Al I through Al XIII. J. Phys. Chem. Ref. Data 8, 817 (1979).Google Scholar
Martin, W.C. and Zalubas, R.: Energy levels of silicon, Si I through Si XIV. J. Phys. Chem. Ref. Data 12, 323 (1983).Google Scholar
Eriksson, K.B.S. and Pettersson, J.E.: New measurements in the spectrum of the neutral nitrogen atom. Phys. Scr. 3, 211 (1971).Google Scholar
Becke, A.D. and Edgecombe, K.E.: A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92, 5397 (1990).Google Scholar
Silvi, B. and Savin, A.: Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371, 683 (1994).Google Scholar
Savin, A., Nesper, R., Wengert, S., and Fässler, T.F.: ELF: The electron localization function. Angew. Chem., Int. Ed. 36, 1808 (1997).Google Scholar
McLean, A.D. and Yoshimine, M.: Theory of molecular polarizabilities. J. Chem. Phys. 47, 1927 (1967).Google Scholar
Yanai, T., Tew, D.P., and Handy, N.C.: A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51 (2004).Google Scholar