Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T13:14:12.392Z Has data issue: false hasContentIssue false

Sputter deposition of a corrosion-resistant amorphous metallic coating

Published online by Cambridge University Press:  31 January 2011

Natalia L. Lee
Affiliation:
Physical Chemistry Department, General Motors Research Laboratories, Warren, Michigan 48090-9055
Galen B. Fisher
Affiliation:
Physical Chemistry Department, General Motors Research Laboratories, Warren, Michigan 48090-9055
Robert Schulz
Affiliation:
Physical Chemistry Department, General Motors Research Laboratories, Warren, Michigan 48090-9055
Get access

Abstract

Starting with corrosion-resistant amorphous Fe32Ni36Cr14P12B6 alloy material, rf sputter deposition has been successfully used to deposit amorphous thin films very similar in composition onto low-carbon (i.e., 1008) steel. The effects that varying sputter deposition parameters has on a film's corrosion resistance, microstructure, and chemical composition have been examined. Optical, scanning, and transmission electron microscopy, Auger depth profiling, and x-ray diffraction were used to characterize the microstructure and composition of the films, while the corrosion resistance was determined by anodic polarization in basic and acidic solutions. A ∼4000 Å thick amorphous film sputtered at ambient temperature onto a 0.05 μm polished 1008 steel substrate improved the corrosion resistance of the steel in a buffered borate solution by lowering the steel's critical current density by two orders of magnitude and by raising its corrosion potential by ∼0.4 V. Bias voltage sputtering was required to produce a film with properties that could withstand a sulfuric acid solution. For example, a film sputtered at – 70 V at ambient temperature onto a steel substrate passivated in sulfuric acid solution, whereas the steel was completely active in this solution without the sputtered film. Passive current densities in this case were ∼2x102μA/cm2. In both solutions the improved corrosion resistance was exhibited by films with lower oxygen content and a denser microstructure. Thus a direct correlation between corrosion resistance, microstructure, and composition is shown.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Thornton, J. A.J. Vac. Sci. Technol. 11, 666 (1974).CrossRefGoogle Scholar
2Westwood, W. D., Prog. Surf. Sci. 7, 71 (1976).CrossRefGoogle Scholar
3Craig, S. and Harding, G. L., J. Vac. Sci. Technol. 19, 205 (1981).CrossRefGoogle Scholar
4Brophy, J. H., Rose, R. M., and Wulff, J., The Structure and Properties of Materials (Wiley, New York, 1964), Vol. 2.Google Scholar
5O'Korie, B. A. and Nowak, W. B., J. Electrochem. Soc. 130, 290 (1983).CrossRefGoogle Scholar
6Kulik, T., Baszkiewicz, J., Karainski, M., Latuszkiewicz, J., and Matyja, H., Corros. Sci. 19, 1001 (1979).Google Scholar
7Devine, T. M., J. Electrochem. Soc. 124, 38 (1977).CrossRefGoogle Scholar
8Chance, R. L. and Ceselli, R. G., General Motors Research Laboratories Publication GMR-4139 (July 1982).Google Scholar
9Nowak, W. B. and Okorie, B. A., Corrosion 38(6), 314 (1982).CrossRefGoogle Scholar
10Okorie, B. A. and Nowak, W. B., J. Electrochem. Soc. 130(2), 290 (1983).CrossRefGoogle Scholar
11Diegle, R. B. and Merz, M. D., J. Electrochem. Soc. 130(9), 2030 (1980).CrossRefGoogle Scholar
12Diegle, R. B., Lineman, D. M., and Boyd, W. K., Interim Technical Report, Office of Naval Research Contract No. 0014–77-C-0488, Battelle Columbus Laboratories, Columbus, Ohio, 1 May 1977-30 April 1978.Google Scholar
13Rosenblum, M. P. and Turnbull, D., J. Non-Cryst. Solids 37 (1980).CrossRefGoogle Scholar
14Chopra, K. L., Thin Film Phenomena (McGraw-Hill, New York, 1969).Google Scholar
15Kim, J. J., Diss. Abstr. Int. B 47, 180 (1987).Google Scholar
16Williams, R. M., Thakoor, A. P., Khana, S. K., and Johnson, W. L., J. Electrochem. Soc. 131, 2791 (1984).CrossRefGoogle Scholar
17Thakoor, A. P., Khanna, S. K., Williams, R. M., and Landel, R. F., J. Vac. Sci. Technol. A 1, 520 (1983).CrossRefGoogle Scholar
18Aranson, A. J., Chen, D., and Class, W. H., Thin Solid Films 72(3), 535 (1980).CrossRefGoogle Scholar
19Fabis, P. M., Thin Solid Films 128 (1-2), 57 (1985).CrossRefGoogle Scholar
20Aubert, A., Danroc, J., Gaucher, A., and Terrat, J. P., Thin Solid Films 126 (1-2), 61 (1985).CrossRefGoogle Scholar
21Thakoor, A. P., Lamb, J. L., Williams, R. M., and Khanna, S. K.,J. Vac. Sci. Technol. A 3(3), 600 (1985).CrossRefGoogle Scholar
22Johansson, B. O., Sundgren, J. E., Green, J. E., Rockett, A., and Barnett, A., J. Vac. Sci. Technol. A 3(2), 303 (1985).CrossRefGoogle Scholar
23Walmsley, R. G., Lee, Y. S., Marshall, A. F., and Stevenson, D. A., J. Non-Cryst. Solids 60-62, 625 (1984).CrossRefGoogle Scholar
24Thornton, J. A., Surf. Eng. 2(4), 283 (1986).CrossRefGoogle Scholar
25Ogura, K. and Majima, T., Electrochim. Acta. 23, 1361 (1978).CrossRefGoogle Scholar
26Schulz, R., Lee, N. L., and Clemens, B. M., J. Mater. Res. 2, 46 (1987).CrossRefGoogle Scholar
27Vossen, J. L., J. Vac. Sci. Technol. 8, 512 (1971).CrossRefGoogle Scholar
28Vossen, J. L. and O'Neill, J. J. Jr. , RCA Rev. 29, 566 (1968).Google Scholar
29Messier, R. and Ross, R. C., J. Appl. Phys. 53, 6220 (1982).CrossRefGoogle Scholar
30Barna, A., Barna, P. B., Bodo, Z., Pocza, J. F., Pozsgai, I., and Radnoczi, G., in Amorphous and Liquid Semiconductors (Taylor and Francis, London, 1974), p. 109.Google Scholar
31Dirks, A. G. and Leamy, H. J., Thin Solid Films 47, 219 (1977).CrossRefGoogle Scholar
32Galeener, F. L., Phys. Rev. Lett. 27, 1716 (1971).CrossRefGoogle Scholar
33Fuhs, W., Heese, H. J., and Langer, K. H., in Amorphous and Liquid Semiconductors (Taylor and Francis, London, 1974), p. 79.Google Scholar
34Staudinger, A. and Nakahara, S., Thin Solid Films 45, 125 (1977).CrossRefGoogle Scholar
35Hauser, J. J. and Staudinger, A., Phys. Rev. B 8, 607 (1973).CrossRefGoogle Scholar
36Roy, R. A. and Messier, R., J. Vac. Sci. Technol. 2, 312 (1984).CrossRefGoogle Scholar
37Knights, J. C. and Lujan, R. A., Appl. Phys. Lett. 35, 244 (1979).CrossRefGoogle Scholar
38Thornton, J. A., J. Vac. Sci. Technol. 11, 66 (1974).CrossRefGoogle Scholar
39Thornton, J. A., Thin Solid Films 40, 335 (1977).CrossRefGoogle Scholar
40Marinov, M., Thin Solid Films 46, 267 (1977).CrossRefGoogle Scholar
41Eser, E., Ogilvie, R. E., and Taylor, K. A., Thin Solid Films 67, 265 (1980).CrossRefGoogle Scholar
42Sundgren, J. E., Johansson, B. O., Hentzell, H. T. G., and Karlsson, S. E., Thin Solid Films 105, 385 (1983).CrossRefGoogle Scholar
43Bland, R. D., Kominiak, G. J., and Mattox, D. M., J. Vac. Sci. Technol. 11, 671 (1974).CrossRefGoogle Scholar
44Mattox, D. M. and Kominiak, G. J., J. Vac. Sci. Technol. 9, 528 (1972).CrossRefGoogle Scholar