Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T09:18:34.204Z Has data issue: false hasContentIssue false

Spherical indentation load-relaxation of soft biological tissues

Published online by Cambridge University Press:  01 August 2006

Jason M. Mattice
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904
Anthony G. Lau
Affiliation:
Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908
Michelle L. Oyen
Affiliation:
Center for Applied Biomechanics, Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904
Richard W. Kent*
Affiliation:
Center for Applied Biomechanics, Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904
*
b)Address all correspondence to this author.e-mail: [email protected]
Get access

Abstract

Elastic-viscoelastic correspondence was used to generate displacement–time solutions for spherical indentation testing of soft biological materials with time-dependent mechanical behavior. Boltzmann hereditary integral operators were used to determine solutions for indentation load-relaxation following a constant displacement rate ramp. A “ramp correction factor” approach was used for routine analysis of experimental load-relaxation data. Experimental load-relaxation tests were performed on rubber, as well as kidney tissue and costal cartilage, two hydrated soft biological tissues with vastly different mechanical responses. The experimental data were fit to the spherical indentation ramp-relaxation solutions to obtain values of short- and long-time shear modulus and of material time constants. The method is used to demonstrate linearly viscoelastic responses in rubber, level-independent indentation results for costal cartilage, and age-independent indentation results for kidney parenchymal tissue.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cooper, A., Barlow, B., Discala, C., String, D.: Mortality and truncal injury: The pediatric perspective. J. Pediatr. Surg. 29(1), 33 (1994).CrossRefGoogle ScholarPubMed
2.Nance, M.L., Lutz, N., Arbogast, K.B., Cornejo, R.A., Kallan, M.J., Winston, F.K., Durbin, D.R.: Optimal restraint reduces the risk of abdominal injury in children involved in motor vehicle crashes. Ann. Surg. 239(1), 127 (2004).CrossRefGoogle ScholarPubMed
3.Farshad, M., Barbezat, M., Flueler, P., Schmidlin, F., Graber, P., Niederer, P.: Material characterization of the pig kidney in relation with the biomechanical analysis of renal trauma. J. Biomech. 32, 417 (1999).CrossRefGoogle ScholarPubMed
4.Tamura, A., Omori, K., Miki, K., Lee, J., Yang, K., and King, A.: Mechanical characterization of porcine abdominal organs, in Proc. 46th Stapp Car Crash Conference SAE Paper No. 2002-22-0003, (Point Verdra Beach, FL, 2002), edited by Stapp advisory committee, (SAE International: Warrendale, PA, 2002), p. 55.Google Scholar
5.Yamada, H.: Strength of Biological Materials (Kreiger, Huntingdon, NY, 1971), pp. 205, 207.Google Scholar
6.Nasseri, S., Bilston, L., Phan-Thein, N.: Viscoelastic properties of pig kidney in shear, experimental results and modeling. Rheol. Acta 41, 180 (2002).CrossRefGoogle Scholar
7.Snedeker, J., Barbezat, M., Niederer, P., Schmidlin, F., Farshad, M.: Strain energy density as a rupture criterion for the kidney: Impact tests on porcine organs, finite element simulation, and a baseline comparison between human and porcine tissues. J. Biomech. 38, 993 (2005).CrossRefGoogle Scholar
8.Rosenberg, L., Johnson, B., Schubert, M.: Proteinpolysaccharides from human articular and costal cartilage. J. Clin. Invest. 44, 1647 (1965).CrossRefGoogle ScholarPubMed
9.Hukins, W., Knight, D.P., Woodhead-Galloway, J.: Amianthoid change: Orientation normal collagen fibrils during aging. Science 194, 622 (1976).CrossRefGoogle ScholarPubMed
10.Mallinger, R., Stockinger, L.: Amianthoid (asbestoid) transformation: Electron microscopial studies on aging human costal cartilage. Am. J. Anat. 181(1), 23 (1988).CrossRefGoogle Scholar
11.Roy, R., Kohles, S.S., Zaporojan, V., Peretti, G.M., Randolph, M.A., Xu, J., Bonassar, L.J.: Analysis of bending behavior of native and engineered auricular and costal cartilage. J. Biomed. Mater. Res. A 68, 597 (2004).CrossRefGoogle ScholarPubMed
12.Rho, J-Y., Tsui, T.Y., Pharr, G.M.: Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18, 1325 (1997).CrossRefGoogle ScholarPubMed
13.Bushby, A.J., Ferguson, V.L., Boyde, A.: Nanoindentation of bone: Comparison of specimens tested in liquid and embedded in polymethylmethacrylate. J. Mater. Res. 19, 249 (2004).CrossRefGoogle Scholar
14.Bembey, A.K., Oyen, M.L., Bushby, A.J., Boyde, A.: Viscoelastic properties of bone as a function of hydration state determined by nanoindentation. Philos. Mag. (2006) (in press).CrossRefGoogle Scholar
15.Gefen, A., Gefen, N., Zhu, Q., Raghupathi, R., Margulies, S.: Age-dependent changes in material properties of the brain and braincase of the rat. J. Neurotrauma. 20, 1163 (2003).CrossRefGoogle ScholarPubMed
16.Miller, K.: Constitutive modeling of abdominal organs. J. Biomech. 33, 367 (2000).CrossRefGoogle ScholarPubMed
17.Lai-fook, S., Wilson, T., Hyatt, R., Rodarte, J.: Elastic constants of inflated lobes of dog lungs. J. Appl. Physiol. 40, 508 (1976).CrossRefGoogle ScholarPubMed
18.Zheng, Y., Mak, A., Lue, B.: Objective assessment of limb tissue elasticity: Development of a manual indentation procedure. J. Rehabil. Res. Dev. 36(2), 71 (1999).Google ScholarPubMed
19.Hayes, W.C., Mockros, L.F.: Viscoelastic properties of human articular cartilage. J. Appl. Physiol. 31, 562 (1971).CrossRefGoogle ScholarPubMed
20.Hayes, W., Keer, L., Herrmann, G., Mockros, L.: A mathematical analysis for indentation tests of articular cartilage. J. Biomech. 5, 541 (1972).CrossRefGoogle ScholarPubMed
21.Parsons, J., Black, J.: The viscoelastic shear behavior of normal rabbit articular cartilage. J. Biomech. 10, 21 (1977).CrossRefGoogle ScholarPubMed
22.Mak, A.F., Lai, W.M., Mow, V.C.: Biphasic indentation of articular cartilage—I. Theoretical analysis. J. Biomech. 20, 703 (1987).CrossRefGoogle ScholarPubMed
23.Beek, M., Koolstra, J., Van Eijden, T.: Human temporomandibular joint disc cartilage as a poroelastic material. Clin. Biomech. (Bristol, Avon) 18, 69 (2003).CrossRefGoogle ScholarPubMed
24.Lee, E.H., Radok, J.R.M.: Contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438 (1960).CrossRefGoogle Scholar
25.Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985).CrossRefGoogle Scholar
26.Oyen, M.L.: Spherical indentation creep following ramp loading. J. Mater. Res. 20, 2094 (2005).CrossRefGoogle Scholar
27.Cheng, L., Xia, X., Scriven, L.E., Gerberich, W.W.: Spherical-tip indentation of viscoelastic material. Mech. Mater. 37, 213 (2005).CrossRefGoogle Scholar
28.Sakai, M.: Time-dependent viscoelastic relation between load and penetration for an axisymmetric indenter. Philos. Mag. A 82, 1841 (2002).CrossRefGoogle Scholar
29.Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar