Published online by Cambridge University Press: 31 January 2011
Recent morphological studies of vapor-deposited diamond indicate (1) that growth on the diamond {100} surface is mediated by steps and (2) that some defects cause rapid initiation of new layers, resulting in characteristic pyramids with edges parallel to surface 〈110〉 directions. If growth on the diamond {100} surface does indeed occur at steps, knowledge of their atomic structure is essential to an understanding of diamond growth. We reexamine results of a recent STM study of homoepitaxial diamond films and suggest that the surfaces on which growth occurs consist of regularly spaced double height steps separated by integral numbers of dimer rows running parallel to the step edges.