Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T14:09:57.826Z Has data issue: false hasContentIssue false

Spatial variations in a.c. susceptibility and microstructure for the YBa2Cu3O7−x superconductor and their correlation with room-temperature ultrasonic measurements

Published online by Cambridge University Press:  31 January 2011

Don J. Roth
Affiliation:
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio 44135
Mark R. DeGuire
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
Leonard E. Dolhert
Affiliation:
W. R. Grace & Co., Research Division, Columbia, Maryland 21044
Aloysius F. Hepp
Affiliation:
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio 44135
Get access

Abstract

The purpose of this study was to (1) examine the spatial (within-sample) uniformity of superconducting behavior and microstructure in YBa2Cu3O7−x specimens over the pore fraction range 0.10–0.25 and (2) determine the viability of using a room-temperature, nondestructive characterization method (ultrasonic velocity imaging) to predict spatial variability. Spatial variations in a.c. susceptibility were observed for specimens containing 0.10 pore fraction. An ultrasonic velocity image constructed from measurements at 1 mm increments across one such specimen revealed microstructural variation between edge and center locations that correlated with variations in a.c. shielding and loss behavior. Optical quantitative image analysis on sample cross sections revealed pore fraction to be the varying microstructural feature.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bednorz, J. G. and Mller, K. A., Z. Phys. B 64, 189193 (1986).CrossRefGoogle Scholar
2.Chu, P. H., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q., and Huang, C. J., Phys. Rev. Lett. 58, 911912 (1987).Google Scholar
3.Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. Lett. 27, L209L210 (1988).CrossRefGoogle Scholar
4.Sheng, Z. Z. and Hermann, A. M., Nature 332, 5558 (1988).CrossRefGoogle Scholar
5.Beyers, R., Lim, G., Engler, E. M., Lee, V. Y., Ramirez, M. L., Savoy, R. J., and Jacowitz, R. D., Appl. Phys. Lett. 51, 614616 (1987).CrossRefGoogle Scholar
6.Beyers, R., Ahn, B. T., Gorman, G., Lee, V. Y., Parkin, S. S. P., Ramirez, M. L., Roche, K. P., Vazquez, J. E., Gur, T. M., and Huggins, R. A., in High Temperature Superconductors: Relationships between Properties, Structure, and Solid-State Chemistry, edited by Jorgensen, J. R., Kitazawa, K., Tarascon, J. M., Thompson, M. S., and Torrance, J. B. (Mater. Res. Soc. Symp. Proc. 156, Pittsburgh, PA, 1989), pp. 7782.Google Scholar
7.Clarke, D. R., Shaw, T. M., and Dimos, D., J. Am. Ceram. Soc. 72, 11031113 (1989).CrossRefGoogle Scholar
8.Roth, D. J., Ph.D. Thesis, Case Western Reserve University, NASA TM-103732.Google Scholar
9.Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics (John Wiley Sons, New York, 1976), pp. 9 and 461.Google Scholar
10.McCauley, J. W., in Nondestructive Testing of High-Performance Ceramics, edited by Vary, A. and Snyder, J. (The American Ceramic Society, Westerville, OH, 1987), pp. 118.Google Scholar
11.Evetts, J. E., IEEE Trans. Magn. MAG-19, 11091119 (1983).CrossRefGoogle Scholar
12.Camps, R. A., Evetts, J. E., Glowacki, B. A., Newcomb, S. B., Somekh, R. E., and Stobbs, W. M., Nature 329, 229232 (1987).CrossRefGoogle Scholar
13.Couach, M., Khoder, A. F., and Monnier, F., Cryogenics 25, 695699 (1985).CrossRefGoogle Scholar
14.Cullity, B. D., Introduction to Magnetic Materials (Addison-Wesley, New York, 1972), pp. 124.Google Scholar
15.Generazio, E. R., Roth, D. J., and Baaklini, G. Y., Mater. Eval. 46, 13381343 (1988).Google Scholar
16.Breazeale, M. A., Contrell, J. H., and Heymann, J. S., in Methods of Experimental Physics, Ultrasonics, edited by Edmonds, P. D. (Academic Press, New York, 1981), Vol. 19, pp. 67135.Google Scholar
17.Hull, D. R., Kautz, H. E., and Vary, A., Mater. Eval. 43, 14551460 (1985).Google Scholar
18.Krautkramer, J. and Krautkramer, H., Ultrasonic Testing of Materials, 2nd ed. (Springer-Verlag, 1977), pp. 6375.CrossRefGoogle Scholar
19.Lempriere, B. M., Standardizing Ultrasonic Attenuation Measurements, Proc. JANNAF, CPIA publication 514 (1989).Google Scholar
20.Wolf, T., Apfelstedt, I., Goldacker, W., Kpfer, H., and Flkiger, R., Physica C 153155, 351352 (1988).CrossRefGoogle Scholar
21.Roth, D. J., Stang, D. B., Swickard, S. M., and DeGuire, M. R., Review and Statistical Analysis of the Ultrasonic Velocity Method for Estimating the Porosity Fraction in Polycrystalline Materials, NASA TM-102501 (1990).CrossRefGoogle Scholar
22.Goldfarb, R. B., Clark, A. F., and Branginski, A. I., Cryogenics 27, 475480 (1987a).CrossRefGoogle Scholar
23.Alford, N. Mc N., Clegg, W. J., Harmer, M. A., Birchall, J. D., Kendall, K., and Jones, D. H., Nature 332, 5859 (1988a).CrossRefGoogle Scholar
24.Kunnerth, D. C., Telschow, K. L., and Walter, J. B., Mater. Eval. 47, 571575 (1989).Google Scholar
25.Fisher, E. A., Residual Stresses in Ceramic Turbine Components, Proc. Workshop Nondestructive Evaluation of Residual Stress, 125126 (1975).Google Scholar
26.Shyne, J. C., Grayelli, N., and Kino, G. S., Nondestructive Evaluation, edited by Buck, O. and Wolf, S. M. (TMS-AIME, 1981), pp. 133146.Google Scholar
27.Zeiger, A. and Jasby, K., J. Nondestructive Eval. 3, 115124 (1982).CrossRefGoogle Scholar
28.Davis, M., Wolf, S., Soulen, R., and Fuller, W., Report on DARPA Round Robin, DARPA High Temperature Superconductor Measurements Workshop, April 1718, 1989, Washington, DC.Google Scholar
29.Hein, R. A., Hojani, H., Barkatt, A., Shafii, H., Michael, K. A., Thorpe, A. N., Ware, M. F., and Alterescu, S., J. Superconductivity 2, 427461 (1989).CrossRefGoogle Scholar
30.Goldfarb, R. B., Clark, A. F., Panson, A. J., and Braginski, A. I., High Temperature Superconductors, edited by Gubser, D. U. and Schluter, M. (Materials Research Society, Pittsburgh, PA, 1987b), pp. 261263.Google Scholar
31.Hein, R. A., Phys. Rev. B 33, 75397549 (1986).CrossRefGoogle Scholar
32.Kpfer, H., Apfelstedt, I., Flkiger, R., Keller, C., Meier-Hirmer, R., Runtsch, B., Turowski, A., Weich, U., and Wolf, T., Cryogenics 28, 650660 (1988a).CrossRefGoogle Scholar
33.Duyneveldt, A.J.V., AC-Susceptibility Studies in Solid State Magnetism, Proc. Letnia Szkola Magnetyzmu, Bialowieza, 139 (1989).Google Scholar
34.Goldfarb, R. B., Cryogenics 26, 621622 (1986).CrossRefGoogle Scholar
35.Dersch, H. and Blatter, G., Phys. Rev. B 38, 1139111404 (1988).CrossRefGoogle Scholar
36.Barbara, B., Khoder, A. F., Couach, M., and Henry, J. Y., Europhys. Lett. 6, 621627 (1988).CrossRefGoogle Scholar
37.Chen, D. X., Nogues, J., and Rao, K. V., Cryogenics 29, 800808 (1989).CrossRefGoogle Scholar
38.Loegel, B., Mehdaoui, A., and Bolmont, D., J. Less-Common Metals 150, 193199 (1989).CrossRefGoogle Scholar
39.Mehdaoui, A., Loegel, B., Bolmont, D., Baron, J., Nanse, G., and Soulard, M., Solid State Commun. 68, 333336 (1988).CrossRefGoogle Scholar
40.Doss, J. D., Engineers Guide to High-Temperature Superconductivity (John Wiley Sons, New York, 1989), pp. 8188, 111, and 122124.Google Scholar
41.Baaklini, G. Y. and Sanders, W. A., Adv. Ceram. Mater. 3, 8894 (1988).Google Scholar
42.Ellingson, W. A., Wong, W. S., Dieckman, S. L., Ackerman, J. L., and Garrido, L., Am. Ceram. Soc. Bull. 68, 11801186 (1989).Google Scholar
43.Gruber, J. J., Smith, J. M., and Brockelman, R. H., Mater. Eval. 46, 9096 (1988).Google Scholar
44.Vikram, C. S. and Ruud, C. O., in Review of Progress in Quantitative Nondestructive Evaluation, edited by Thompson, D. O. and Chimenti, D. E. (Plenum Press, New York, 1986), pp. 13271334.Google Scholar
45.Hsu, N. N., Proctor, T. M., Jr., and Blessing, G. V., J. Testing and Eval. 10, 230234 (1982).CrossRefGoogle Scholar
46.Kino, G. S., Barnett, D. M., Grayelli, N., Herrmann, G., Hunter, J. B., Ilic, D. B., Johnson, G. C., King, R. B., Scott, M. P., and Shyne, J. C., J. Nondestructive Eval. 1, 6777 (1980).CrossRefGoogle Scholar
47.Szilard, J., in Ultrasonic Testing, edited by Szilard, J. (John Wiley Sons, New York, 1982), pp. 123 and 217261.Google Scholar
48.Rice, R. W., in Properties of Microstructure: Treatise on Materials Science and Technology, edited by MacCrone, R. K. (Academic Press, New York, 1977), Vol. 11, pp. 199381.CrossRefGoogle Scholar
49.Alers, G. A., in Physical Acoustics, edited by Mason, W. P. (Academic Press, New York, 1966), Vol. IV, Part A, pp. 277297.Google Scholar
50.Truell, R., Elbaum, C., and Chick, B. B., Ultrasonic Methods in Solid State Physics (Academic Press, New York, 1969), pp. 7778 and 159179.Google Scholar