Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T22:09:18.406Z Has data issue: false hasContentIssue false

Solution-processed lanthanum zirconium oxide as a barrier layer for high Ic-coated conductors

Published online by Cambridge University Press:  01 April 2006

Srivatsan Sathyamurthy*
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Mariappan Paranthaman
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Lee Heatherly
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Patrick M. Martin
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
E.D. Specht
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Amit Goyal
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Thomas Kodenkandath
Affiliation:
American Superconductor Corporation, Westborough, Massachusetts 01581
Xiaoping Li
Affiliation:
American Superconductor Corporation, Westborough, Massachusetts 01581
Martin W. Rupich
Affiliation:
American Superconductor Corporation, Westborough, Massachusetts 01581
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

High-quality lanthanum zirconium oxide (La2Zr2O7 or LZO) films have been deposited and processed on Ni–W substrates using a sol-gel processing approach. It has been demonstrated that crack-free coatings with thicknesses up to 100 nm can be processed in a single step, while thicker coatings (200–225 nm) were processed using a multiple coating and annealing process. Using simulated metalorganic deposition (MOD)-YBa2Cu3O7−δ (YBCO) processing conditions, the barrier properties of the sol-gel LZO coating with a thickness of 120 nm were found to be comparable to that of the standard 3-layer buffer stack deposited using physical vapor deposition. Secondary ion mass spectroscopy depth profile analysis of LZO films annealed in oxygen-18 shows that LZO effectively stops the diffusion of Ni within the first 80–100 nm. Using MOD processes, a CeO2 cap layer and superconducting YBCO layer were deposited on sol-gel LZO/Ni–W. For the first time, using such an all-solution conductor architecture, a critical current (Ic) of 140 A/cm with a corresponding critical current density (Jc) of 1.75 MA/cm2 has been demonstrated. Using a very thin Y2O3 seed layer (∼10 nm) deposited by electron beam evaporation; improved texture quality in the LZO layers has been demonstrated. The performance of the LZO deposited on these samples was evaluated using a sputtered CeO2 cap layer and MOD YBCO layer. Critical currents of up to 255 A/cm (3.2 MA/cm2) with 0.8-μm-thick YBCO films have been demonstrated, comparable to the performance of films grown using physical vapor deposited yttria stabilized zirconia as a barrier layer. Similar experiments using an MOD-CeO2 cap layer and MOD-YBCO layer yielded critical currents of 200 A/cm (2.5 MA/cm2) with 0.8-μm-thick YBCO films.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, Y., Tanabe, N., Kohno, O., Ikeno, Y.: In-plane aligned YBCO thin films deposited on polycrystalline metallic substrates. Appl. Phys. Lett. 60, 769 (1992).CrossRefGoogle Scholar
2.Arendt, P.N., Foltyn, S.R., Civale, L., DePaula, R.F., Dowden, P.C., Groves, J.R., Holesinger, T.G., Jia, Q.X., Kreiskott, Z., Stan, L., Usov, I., Wang, H., Coulter, J.Y.: High critical current YBCO coated conductors based on IBAD MgO. Physica C 412, 795 (2004).CrossRefGoogle Scholar
3.Goyal, A., Norton, D.P., Budai, J.D., Paranthaman, M., Specht, E.D., Kroeger, D.M., Christen, D.K., He, Q., Saffian, B., List, F.A., Lee, D.F., Martin, P.M., Klabunde, C.E., Hatfield, E., Sikka, V.K.: High critical current density superconducting tape by epitaxial deposition of YBCO thin films on biaxially textured metals. Appl. Phys. Lett. 69, 1795 (1996).CrossRefGoogle Scholar
4.Norton, D.P., Goyal, A., Budai, J.D., Christen, D.K., Kroeger, D.M., Specht, E.D., He, Q., Saffian, B., Paranthaman, M., Klabunde, C.E., Lee, D.F., Sales, B.C., List, F.A.: Epitaxial YBa2Cu3O7−δ on biaxially textured Ni(001): An approach to superconducting tapes with high critical current density. Science 274, 755 (1996).CrossRefGoogle Scholar
5.Prusseit, W., Sigl, G., Nemetschek, R., Hoffman, C., Handke, J., Lumkemann, A., Kinder, H.: Commercial coated conductor fabrication based on inclined substrate deposition. IEEE Trans. Appl. Supercond. 15, 2608 (2005).CrossRefGoogle Scholar
6.Ma, B.H., Uprety, K.K., Koritala, R.E., Fisher, B.L., Dorris, S.F., Miller, D.J., Maroni, V.A., Balachandran, U.B.: Growth and properties of YBCO coated conductors fabricated using inclined substrate deposition. IEEE Trans. Appl. Supercond. 15, 2970 (2005).CrossRefGoogle Scholar
7.Dimos, D., Choudhary, P., Mannhart, J., Goues, F.K. Le: Orientation dependence of grain boundary critical currents in YBa2Cu3O7−δ bicrystals. Phys. Rev. Lett. 61, 219 (1988).CrossRefGoogle Scholar
8.Verebelyi, D.T., Schoop, U., Thieme, C., Li, X., Zhang, W., Kodenkandath, T., Malezemoff, A.P., Nguyen, N., Siegel, E., Buczek, D., Lynch, J., Scudiere, J., Rupich, M., Goyal, A., Specht, E.D., Martin, P.M., Paranthaman, M.: Uniform performance of continuously processed MOD-YBCO-coated conductors using a textured Ni–W substrate. Supercond. Sci. Tech. 16, L19 (2003).CrossRefGoogle Scholar
9.Siegal, M.P., Clem, P.G., Dawley, J.T., Ong, R.J., Rodriguez, M.A., Overmyer, D.L.: All solution-chemistry approach to YBa2Cu3O7−δ coated conductors. Appl. Phys. Lett. 80, 2710 (2002).CrossRefGoogle Scholar
10.Sathyamurthy, S., Paranthaman, M., Bhuiyan, M.S., Payzant, E.A., Lee, D.F., Goyal, A., Li, X., Kodenkandath, T., Schoop, U., Rupich, M.: Solution deposition approach to high Jc coated conductor fabrication. IEEE Trans. Appl. Supercond. 15, 2974 (2005).CrossRefGoogle Scholar
11.Sathyamurthy, S., Paranthaman, M., Aytug, T., Kang, B.W., Martin, P.M., Goyal, A., Kroeger, D.M., Christen, D.K.: Chemical solution deposition of lanthanum zirconate buffer layers on biaxially textured Ni–1.7% Fe–3% W substrates for coated conductor fabrication. J. Mater. Res. 17, 1543 (2002).CrossRefGoogle Scholar
12.Sathyamurthy, S., Paranthaman, M., Zhai, H.Y., Christen, H.M., Martin, P.M., Goyal, A.: Lanthanum zirconate: A single buffer layer processed by solution deposition for coated conductor fabrication. J. Mater. Res. 17, 2181 (2002).CrossRefGoogle Scholar
13.Sathyamurthy, S., Paranthaman, M., Zhai, H.Y., Kang, S., Aytug, T., Cantoni, C., Leonard, K.J., Payzant, E.A., Christen, H.M., Goyal, A., Li, X., Schoop, U., Kodenkandath, T., Rupich, M.W.: Chemical solution deposition of lanthanum zirconate barrier layers applied to low cost coated conductor fabrication. J. Mater. Res. 19, 2117 (2004).CrossRefGoogle Scholar
14.Rupich, M.W., Verebelyi, D.T., Zhang, W., Kodenkandath, T., Li, X.P.: Metalorganic deposition of YBCO films second generation high temperature superconductor wires. MRS Bull. 29, 572 (2004).CrossRefGoogle Scholar
15.Lee, D.F., Leonard, K.J., Heatherly, L., Yoo, J., List, F.A., Rutter, N., Cook, S.W., Sathyamurthy, S., Paranthaman, M., Martin, P.M., Goyal, A., Kroeger, D.M.: Reel-to-reel exsitu conversion of high critical current density electron beam co-evaporated BaF2 precursors on RABiTS. Supercond. Sci. Technol. 17, 386 (2004).CrossRefGoogle Scholar
16.Bhuiyan, M.S., Paranthaman, M., Sathyamurthy, S., Aytug, T., Kang, S., Lee, D.F., Goyal, A., Payzant, E.A., Salama, K.: MOD approach for the growth of epitaxial CeO2 buffer layers on biaxially textured Ni–W substrates for YBCO coated conductors. Supercond. Sci. Tech. 16, 1305 (2003).CrossRefGoogle Scholar