Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T12:30:25.789Z Has data issue: false hasContentIssue false

Solid/solid interfacial reactions between Sn–0.7 wt% Cu and Ni–7 wt% V

Published online by Cambridge University Press:  31 January 2011

Chih-chi Chen
Affiliation:
Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu, Taiwan 300, Republic of China
Sinn-wen Chen*
Affiliation:
Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu, Taiwan 300, Republic of China
Chih-horng Chang
Affiliation:
Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu, Taiwan 300, Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Sn–0.7 wt% Cu alloy is an important Pb-free solder, and Ni–7 wt% V is the major diffusion barrier layer material of flip chip technology. Reactions at the Sn–0.7 wt% Cu/Ni–7 wt% V interface are examined at 160, 180, and 210 °C. Only the Cu6Sn5 phase is formed in the Sn–0.7 wt% Cu/Ni–7 wt% V couple reacted at 160 and 180 °C; however, in addition to the Cu6Sn5 and Ni3Sn4 phases, a quaternary Q phase is formed in the Sn–0.7 wt% Cu/Ni–7 wt% V couple reacted at 210 °C. The Q phase is a mixture of nanocrystalline Ni3Sn4 phase and an amorphous phase. With longer reaction time at 210 °C in the Ni–V/Q/Sn–Cu couple where the Q phase is in direct contact with solder, the Ni3Sn4 phase nucleates inside the preformed Q phase, and the alternating layer phenomenon Ni–V/Q/Ni3Sn4/Q/Ni3Sn4/Cu6Sn5/Sn–Cu is observed. The interesting solid state amorphization and alternating layer phenomena at 210 °C are primarily caused by the fact that Sn and Cu are fast diffusing species, while V is relatively immobile.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Frear, D.R., Jang, J.W., Lin, J.K.Zhang, C.: Pb-free solders for flip-chip interconnects. JOM 53(6), 28 2001CrossRefGoogle Scholar
2Laurila, T., Vuorinen, V.Kivilahti, J.K.: Interfacial reactions between lead-free solders and common base materials. Mater. Sci. Eng., R 49, 1 2005CrossRefGoogle Scholar
3Liu, C.Y., Tu, K.N., Sheng, T.T., Tung, C.H., Frear, D.R.Elenius, P.: Electron microscopy study of interfacial reaction between eutectic SnPb and Cu/Ni(V)/Al thin film metallization. J. Appl. Phys. 87, 750 2000CrossRefGoogle Scholar
4Li, M., Zhang, F., Chen, W.T., Zeng, K., Tu, K.N., Balkan, H.Elenius, P.: Interfacial microstructure evolution between eutectic SnAgCu solder and Al/Ni(V)/Cu thin films. J. Mater. Res. 17, 1612 2002CrossRefGoogle Scholar
5Chen, C-C., Chen, S-W.Kao, C-Y.: Interfacial reactions in the Sn–(Ag)/(Ni,V) couples and phase equilibria of the Sn–Ni–V system at the Sn-rich corner. J. Electron. Mater. 35, 922 2006CrossRefGoogle Scholar
6Chen, C-C.Chen, S-W.: The Sn/Ni–7 wt% V interfacial reactions. J. Electron. Mater. 35, 1701 2006CrossRefGoogle Scholar
7Chen, S-W., Chen, C-C.Chang, C-H.: Interfacial reactions in Sn/Ni–7 wt% V couple. Scr. Metall. 56, 453 2007CrossRefGoogle Scholar
8Chen, S-W.Chen, C-C.: Interfacial reactions in Sn–0.7 wt% Cu/Ni–V couples at 250 °C. J. Electron. Mater. 36, 1121 2007CrossRefGoogle Scholar
9Official Journal of the European Union, pp. L 37/19-L 37/23, 13.2.2003CrossRefGoogle Scholar
10Official Journal of the European Union, pp. L 37/24-L 37/38, 13.2.2003CrossRefGoogle Scholar
11Abtew, M.Selvaduray, G.: Lead-free solders in microelectronics. Mater. Sci. Eng., R 27, 95 2000CrossRefGoogle Scholar
12Glazer, J.: Metallurgy of low temperature Pb-free solders for electronic assembly. Int. Mater. Rev. 40(2), 65 1995CrossRefGoogle Scholar
13Hsu, H-F.Chen, S-W.: Phase equilibria of the Sn–Ag–Ni ternary system and interfacial reactions at the Sn–Ag/Ni joints. Acta Mater. 52, 2541 2004CrossRefGoogle Scholar
14Chen, C-M.Chen, S-W.: Electromigration effect upon the Sn–0.7 wt% Cu/Ni and Sn–3.5wt%Ag/Ni interfacial reactions. J. Appl. Phys. 90, 1208 2001CrossRefGoogle Scholar
15Chen, W.T., Ho, C.E.Kao, C.R.: Effect of Cu concentration on the interfacial reactions between Ni and Sn–Cu solders. J. Mater. Res. 17, 263 2002CrossRefGoogle Scholar
16Chen, S-W., Wu, S-H.Lee, S-W.: Interfacial reactions in the Sn–(Cu)/Ni, Sn–(Ni)/Cu and Sn/(Cu, Ni) systems. J. Electron. Mater. 32, 1188 2003CrossRefGoogle Scholar
17Kim, K.S., Huh, S.H.Suganuma, K.: Effects of intermetallic compounds on properties of Sn–Ag–Cu lead-free soldered joints. J. Alloys Compd. 352, 226 2003CrossRefGoogle Scholar
18Choi, W.J., Yeh, E.C.C.Tu, K.N.: Mean-time-to-failure study of flip chip solder joints on Cu/Ni(V)/Al thin-film under-bump-metallization. J. Appl. Phys. 94(9), 5665 2003CrossRefGoogle Scholar
19Wang, C-H.Chen, S-W.: Isothermal section of the ternary Sn–Cu–Ni system and interfacial reactions in the Sn–Cu/Ni couples at 800 °C. Metall. Mater. Trans. A 34, 2281 2003CrossRefGoogle Scholar
20Cheng, M.D., Yen, S.F.Chuang, T.H.: Intermetallic compounds formed during the reflow and aging of Sn–3.8Ag–0.7Cu and Sn–20In–2Ag–0.5Cu solder ball grid array packages. J. Electron. Mater. 33, 171 2004CrossRefGoogle Scholar
21Wang, S.J., Kao, J.J.Liu, C.Y.: Correlation between interfacial reactions and mechanical strengths of Sn(Cu)/Ni(P) solder bumps. J. Electron. Mater. 33, 1130 2004CrossRefGoogle Scholar
22Pang, J.H.L., Xu, L., Shi, X.Q., Zhou, W.Ngoh, S.L.: Intermetallic growth studies on Sn–Ag–Cu lead-free solder joints. J. Electron. Mater. 33, 1219 2004CrossRefGoogle Scholar
23Luo, W.C., Ho, C.E., Tsai, J.Y., Lin, Y.L.Kao, C.R.: Solid-state reactions between Ni and Sn–Ag–Cu solders with different Cu concentrations. Mater. Sci. Eng., A 396, 385 2005CrossRefGoogle Scholar
24Wang, C-H.Chen, S-W.: Sn–0.7 wt% Cu/Ni interfacial reactions at 250 °C. Acta Mater. 54, 247 2006CrossRefGoogle Scholar
25Nash, P.Nash, A.: The Ni–Sn (nickel–tin) system. Bull. Alloy Phase Diagrams 6, 350 1985CrossRefGoogle Scholar
26Smith, J.F.: The Sn–V (tin–vanadium) system. Bull. Alloy Phase Diagrams 2, 210 1981CrossRefGoogle Scholar
27JCPDS No. 04-0851 International Center for Diffraction Data Newton Square, PA 2000Google Scholar
28JCPDS No. 04-0845 International Center for Diffraction Data Newton Square, PA 2000Google Scholar
29JCPDS No. 18-1391 International Center for Diffraction Data Newton Square, PA 2000Google Scholar
30JCPDS No. 86-2265 International Center for Diffraction Data Newton Square, PA 2000Google Scholar
31Lin, C-H., Chen, S-W.Wang, C-H.: Phase equilibria and solidification properties of Sn–Cu–Ni alloys. J. Electron. Mater. 31, 907 2002CrossRefGoogle Scholar
32Schwarz, R.B.Johnson, W.L.: Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals. Phys. Rev. Lett. 51, 415 1983CrossRefGoogle Scholar
33Guilmin, P., Guyot, P.Marchal, G.: Amorphization of crystalline Co and Sn multilayers by solid state reaction. Phys. Lett. A 109, 174 1985CrossRefGoogle Scholar
34Herd, S.R., Tu, K.N.Ahn, K.Y.: Formation of an amorphous Rh–Si alloy by interfacial reaction between amorphous Si and crystalline Rh thin films. Appl. Phys. Lett. 42, 597 1983CrossRefGoogle Scholar
35Lur, W.Chen, L.J.: Growth kinetics of amorphous interlayer formed by interdiffusion of polycrystalline Ti thin-film and single-crystal silicon. Appl. Phys. Lett. 54, 1217 1989CrossRefGoogle Scholar
36Ouyang, C-P., Chang, J-J., Wen, J-F., Tien, L-C., Hwang, J.Pi, T-W.: Solid state amorphization at the room temperature deposited Ir/Si interface. J. Appl. Phys. 91, 1204 2002CrossRefGoogle Scholar
37Clemens, B.M., Johnson, W.L.Schwarz, R.B.: Amorphous zirconium-nickel films formed by solid state reactions. J. Non-Cryst. Solids 61 & 62, 817 1984CrossRefGoogle Scholar
38Saunders, N.Miodownik, A.P.: The Cu–Sn (copper–tin) system. Bull. Alloy Phase Diagrams 11, 278 1990CrossRefGoogle Scholar
39van Loo, F.J.J.: Multiphase diffusion in binary and ternary solid-state systems. Prog. Solid State Chem. 20, 47 1990CrossRefGoogle Scholar
40Shiau, F.Y.Chang, Y.A.: Amorphous phase formation by solid-state reaction between polycrystalline Co thin films and single-crystal GaAs. Appl. Phys. Lett. 55(15), 1510 1989CrossRefGoogle Scholar
41Verhoeven, J.D.: Fundamentals of Physical Metallurgy John Wiley & Sons New York 1975 137–167Google Scholar