Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T12:39:21.874Z Has data issue: false hasContentIssue false

Solid-phase epitaxial growth of oxide buffer materials for Rba2Cu3O7−y(R: rare earth and Y) superconductor

Published online by Cambridge University Press:  31 January 2011

K. Yamagiwa*
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center (ISTEC), Division V, 2-4-1, Mutsuno, Atsuta-ku, Nagoya 456-8587, Japan
K. Matsumoto
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center (ISTEC), Division V, 2-4-1, Mutsuno, Atsuta-ku, Nagoya 456-8587, Japan, and Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
I. Hirabayashi
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center (ISTEC), Division V, 2-4-1, Mutsuno, Atsuta-ku, Nagoya 456-8587, Japan
*
a)Address all correspondence to this author. e-mail: [email protected] Present address: Research Dept, R & D Center, NGK Spark Plug Co., Ltd., 2808 Iwasaki, Komaki-shi, Aichi 485-8510, Japan. e-mail: [email protected]
Get access

Abstract

We prepared various oxide buffer films on single-crystalline oxide substrates using chemical solution deposition to investigate general interfacial problems of buffer layers for coated conductors, such as epitaxial relationships between buffer material and the substrate. We found that (i) interfaces between the films and the substrates having the same crystal structure were compatible, even in a range of misfit value up to 7%, showing in-plane alignment; however (ii) interfaces between the films and substrates of other combinations of interface structures, with and without occupying tetragonal sites, narrow the range of the epitaxial growth. The former results (i) can be explained by the arrangement of oxygen ions, but for the latter cases (ii), cation arrangement is also important in forming a compatible interface as well as an anion arrangement. The general tendency is largely explained by the ionic arrangement at the interface. The interface structure becomes unstable by the electrostatic repulsive force since the distance between cations at the interface becomes shorter than that in each original crystal structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Inoue-Sugiyama, , Yuasa, Y., Ozawa, T., Higashiyama, K., and Osamura, K., in Advances in Superconductivity IX, edited by Nakajima, S. and Murakami, M. (Springer, Tokyo, Japan, 1997), p. 927.CrossRefGoogle Scholar
2.Yamazaki, M., Thanh, T.D., Kudo, Y., Kubota, H., Yoshino, H., and Inoue, K., in Advances in Superconductivity X, edited by Osamura, K. and Hirabayashi, I. (Springer, Tokyo, Japan, 1998), p. 619.CrossRefGoogle Scholar
3.Iijima, Y., Hosaka, M., Tanabe, N., Sadakata, N., Saitoh, T., Kohno, O., and Takeda, K., J. Mater. Res. 12, 2913 (1997).CrossRefGoogle Scholar
4.Hasegawa, K., Mukai, H., Konishi, M., Fujikami, J., Ohmatsu, K., Hayashi, K., Sato, K., Honjo, S., Ishii, H., Sato, Y., and Iwata, Y., in Advances in Superconductivity X, edited by Osamura, K. and Hirabayashi, I. (Springer, Tokyo, Japan, 1998), p. 607.CrossRefGoogle Scholar
5.Goyal, A., Norton, D.P., Kroeger, D.M., Christen, D.K., Paranthaman, M., Specht, E.D., Budai, J.D., He, Q., Staffian, B., List, F.A., Lee, D.F., Hatfield, E., Martin, P.M., Klabunde, C.E., Mathis, J., and Park, C., J. Mater. Res. 12, 2924 (1997).CrossRefGoogle Scholar
6.Matsumoto, K., Kim, S.B., Wen, J-G., Hirabayashi, I., Watanabe, T., Uno, N., and Ikeda, M., in IEEE Transactions on Applied Superconductivity 9, 1539 (1999).CrossRefGoogle Scholar
7.He, Q., Christen, D.K., Budai, J.D., Specht, E.D., Lee, D.F., Goyal, A., Norton, D.P., Paranthaman, M., List, F.A., and Kroeger, D.M., Physica C 275, 155 (1997).CrossRefGoogle Scholar
8.Kikuchi, A., Tachikawa, K., Ichinose, A. and Akita, S., in Advances in Superconductivity IX, edited by Nakajima, S. and Murakami, M. (Springer, Tokyo, 1997), p. 615.Google Scholar
9.Takahashi, Y., Matsumoto, K., Kim, S.B., Hirabayashi, I., Akata, H., and Higashiyama, K., in IEEE Transactions on Applied Superconductivity 9, (1999), Vol. 9, p. 2272.CrossRefGoogle Scholar
10.Hasegawa, M., Yoshida, Y., Matsumoto, K., Hirabayashi, I., Iwata, M., Takai, Y., Akata, H., and Higashiyama, K., in IEEE Transactions on Applied Superconductivity 9, 2240 (1999).CrossRefGoogle Scholar
11.Becht, M. and Morishita, T., J. Alloys Compd. 251, 310 (1997).CrossRefGoogle Scholar
12.Yang, C-Y., Ichinose, A., Babcock, S.E., Morrell, J.S., Mathis, J.E., Verebelyi, D.T., Paranthaman, M., Beach, D.B., and Christen, D.K., Physica C 331, 73 (2000)CrossRefGoogle Scholar
13.Shoup, S.S., Paranthaman, M., Beasch, D.B., Specht, E.D., and Williams, R.W., J. Mater. Res. 12, 1107 (1997).CrossRefGoogle Scholar
14.Ng, M.F. and Cima, M.J., J. Mater. Res. 12, 1306 (1997).CrossRefGoogle Scholar
15.Sheth, A., Lasrado, V., White, M., and Paranthaman, M., in IEEE Transactions on Applied Superconductivity, 9, 1514 (1999).CrossRefGoogle Scholar
16.Gladstone, T.A., Moore, J.C., Wilkinson, A.J., and Grovenor, C.R.M, in IEEE Transactions on Applied Superconductivity 9, 2252, (1999).CrossRefGoogle Scholar
17.Yoon, J.G. and Kim, K., Appl. Phys. Lett. 66, 2661 (1995).CrossRefGoogle Scholar
18.Kim, S., Fujimoto, T., Manabe, T., Yamaguchi, I., Kumagai, T., and Mizuta, S., J. Mater. Res. 14, 592 (1999).CrossRefGoogle Scholar
19.Hwang, D.M., Ravi, T.S., Ramesh, R., Chan, S-W., Chen, C.Y., Nazar, L., Wu, X.D., Inam, A., and Venkatesan, T., Appl. Phys. Lett. 57, 1690 (1990).CrossRefGoogle Scholar