Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T01:09:38.991Z Has data issue: false hasContentIssue false

Solid-phase crystallization under continuous heating: Kinetic and microstructure scaling laws

Published online by Cambridge University Press:  31 January 2011

J. Farjas*
Affiliation:
Grup de Recerca en Materials i Termodinàmica (GRMT), Department of Physics, University of Girona, Campus Montilivi, Edif. PII, E17071 Girona, Catalonia, Spain
P. Roura
Affiliation:
Grup de Recerca en Materials i Termodinàmica (GRMT), Department of Physics, University of Girona, Campus Montilivi, Edif. PII, E17071 Girona, Catalonia, Spain
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The kinetics and microstructure of solid-phase crystallization under continuous heating conditions and random distribution of nuclei are analyzed. An Arrhenius temperature dependence is assumed for both nucleation and growth rates. Under these circumstances, the system has a scaling law such that the behavior of the scaled system is independent of the heating rate. Hence, the kinetics and microstructure obtained at different heating rates differ only in time and length scaling factors. Concerning the kinetics, it is shown that the extended volume evolves with time according to αex = [exp(κCt′)]m+1, where t′ is the dimensionless time. This scaled solution not only represents a significant simplification of the system description, it also provides new tools for its analysis. For instance, it has been possible to find an analytical dependence of the final average grain size on kinetic parameters. Concerning the microstructure, the existence of a length scaling factor has allowed the grain-size distribution to be numerically calculated as a function of the kinetic parameters.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kolmogorov, A.N.: On the statistical theory of metal crystallisation. Izv. Akad. Nauk. SSSR Ser. Fiz. 1, 355 1937Google Scholar
2Avrami, M.J.: Kinetics of phase change. I. General theory. Chem. Phys. 7, 1103 1939Google Scholar
3Avrami, M.J.: Kinetics of phase change. II. Transformation–time relations for random distribution of nuclei. Chem. Phys. 8, 212 1940Google Scholar
4Avrami, M.J.: Granulation, phase change, and microstructure—Kinetics of phase change. III. Chem. Phys. 9, 177 1941Google Scholar
5Johnson, W.A.Mehl, R.F.: Reaction kinetics in processes of nucleation and growth. Trans. Amer. Inst. Min. Met. Eng. 135, 416 1939Google Scholar
6Burbelko, A.A., Fraś, E.Kapturkiewicz, W.: About Kolmogorov’s statistical theory of phase transformation. Mater. Sci. Eng., A 413–414, 429 2005CrossRefGoogle Scholar
7Henderson, D.W.: Experimental analysis of non-isothermal transformations involving nucleation and growth. J. Thermal Anal. 15, 325 1979CrossRefGoogle Scholar
8Ozawa, T.: Kinetics of non-isothermal crystallization. Polymer 12, 150 1971CrossRefGoogle Scholar
9Henderson, D.W.: Thermal analysis of non-isothermal transformations involving nucleation and growth. J. Non-Cryst. Solids 30, 301 1979CrossRefGoogle Scholar
10Bruijn, T.J.W., Jong, W.A.Berg, P.J.: Kinetic parameters in Avrami–Erofeev-type reactions from isothermal and non-isothermal experiments. Thermochim. Acta 45, 315 1981CrossRefGoogle Scholar
11Yinnon, H.Uhlmann, D.R.: Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids. 1. Theory. J. Non-Cryst. Solids 54, 253 1983CrossRefGoogle Scholar
12Mittemeijer, E.J.: Analysis of the kinetics of phase transformations. J. Mater. Sci. 27, 3977 1992CrossRefGoogle Scholar
13Weinberg, M.C.: Nonisothermal surface nucleated transformation kinetics. J. Non-Cryst. Solids 151, 81 1992CrossRefGoogle Scholar
14Woldt, E.: The relationship between isothermal and nonisothermal description of Johnson–Mehl–Avrami–Kolmogorov kinetics. J. Phys. Chem. Solids 53, 521 1992CrossRefGoogle Scholar
15Weinberg, M.C.: Glass-formation and crystallization kinetics. Thermochim. Acta 280, 63 1996CrossRefGoogle Scholar
16Krüger, P.: On the relation between nonisothermal and isothermal Kolmogorov–Johnson–Mehl–Avrami crystallization kinetics. J. Phys. Chem. Solids 54, 1549 1993CrossRefGoogle Scholar
17Long, Y., Shanks, R.A.Stachurski, R.A.: Kinetics of polymer crystallization. Prog. Polym. Sci. 20, 651 1995CrossRefGoogle Scholar
18Vázquez, J., Wagner, C., Villares, P.Jimenez-Garay, R.: A theoretical method for determining the crystallized fraction and kinetic parameters by DSC, using non-isothermal techniques. Acta Mater. 44, 4807 1996CrossRefGoogle Scholar
19Starink, M.J.Zahra, A.M.: An analysis method for nucleation and growth controlled reactions at constant heating rate. Thermochim. Acta 292, 159 1997CrossRefGoogle Scholar
20Tkatch, V.I., Limanovskii, A.I.Kameneva, V. Yu: Studies of crystallization kinetics of Fe40Ni40P14B6 and Fe80B20 metallic glasses under non-isothermal conditions. J. Mater. Sci. 32, 5669 1997CrossRefGoogle Scholar
21Ribeiro-Frade, J.: Crystallization with variable temperature: Corrections for the activation energy. J. Am. Ceram. Soc. 81, 2654 1998CrossRefGoogle Scholar
22López-Alemany, P.L., Vázquez, J., Villares, P.Jimenez-Garay, R.: Theoretical analysis on the mechanism and transformation kinetics under non-isothermal conditions—Application to the crystallization of the semiconducting Sb0.06As0.36Se0.48 alloy. Mater. Chem. Phys. 65, 150 2000CrossRefGoogle Scholar
23Málek, J.: Kinetic analysis of crystallization processes in amorphous materials. Thermochim. Acta 355, 239 2000CrossRefGoogle Scholar
24Ruitenberg, G., Woldt, E.Petford-Long, A.K.: Comparing the Johnson–Mehl–Avrami–Kolmogorov equations for isothermal and linear heating conditions. Thermochim. Acta 378, 97 2001CrossRefGoogle Scholar
25Kempen, A.T.W., Sommer, F.Mittemeijer, E.J.: Determination and interpretation of isothermal and non-isothermal transformation kinetics: The effective activation energies in terms of nucleation and growth. J. Mater. Sci. 37, 1321 2002CrossRefGoogle Scholar
26Jun, S., Zhang, H.Bechhoefer, J.: Nucleation and growth in one dimension. I. The generalized Kolmogorov–Johnson– Mehl–Avrami model. J. Phys. Rev. E 71, 011908 2005CrossRefGoogle ScholarPubMed
27Liu, F., Sommer, F.Mittemeijer, E.J.: An analytical model for isothermal and isochronal transformation kinetics. J. Mater. Sci. 39, 1621 2004CrossRefGoogle Scholar
28Liu, F., Sommer, F.Mittemeijer, E.J.: Determination of nucleation and growth mechanisms of the crystallization of amorphous alloys: Application to calorimetric data. Acta Mater. 52, 3207 2004CrossRefGoogle Scholar
29Rios, P.R.: Relationship between non-isothermal transformation curves and isothermal and non-isothermal kinetics. Acta Mater. 53, 4893 2005CrossRefGoogle Scholar
30Vázquez, J., García-Barreda, D., López-Alemany, P.L., Villares, P.Jimenez-Garay, R.: A study on non-isothermal transformation kinetics—Application to the crystallization of the Ge0.18Sb0.23Se0.59 glassy alloy. Mater. Chem. Phys. 96, 107 2006CrossRefGoogle Scholar
31Farjas, J.Roura, P.: Modification of the Kolmogorov–Johnson– Mehl–Avrami rate equation for non-isothermal experiments and its analytical solution. Acta Mater. 54, 5573 2006CrossRefGoogle Scholar
32Farjas, J.Roura, P.: Numerical model of solid phase transformations governed by nucleation and growth: Microstructure development during isothermal crystallization. Phys. Rev. B 75, 184112 2007CrossRefGoogle Scholar
33Axe, J.D.Yamada, Y.: Scaling relations for grain autocorrelation functions during nucleation and growth. Phys. Rev. B 34, 1599 1986CrossRefGoogle ScholarPubMed
34Crespo, D.Pradell, T.: Evaluation of time-dependent grain-size populations for nucleation and growth kinetics. Phys. Rev. B 54, 3101 1996CrossRefGoogle ScholarPubMed
35Christian, J.W.: The Theory of Transformation in Metals and Alloys 3 ed.Elsevier Science Lt. Oxford, Engla 2002 Part I 423–527Google Scholar
36Spinella, C., Lombardo, S.Priolo, F.: Crystal grain nucleation in amorphous silicon. J. Appl. Phys. 84, 5383 1998CrossRefGoogle Scholar
37Davis, P.J.: Gamma function and related functions in Handbook of Mathematical Functions, edited by M. Abramowitz and I.A. Stegun (Dover Publications, Inc., New York) 1972 253Google Scholar
38Cahn, J.W.: Transformation kinetics during continuous cooling. Acta Metall. 4, 572 1956CrossRefGoogle Scholar
39Turnbull, D.: Formation of crystal nuclei in liquid metals. J. Appl. Phys. 21, 1022 1950CrossRefGoogle Scholar
40Cahn, J.W.: The kinetics of grain boundary nucleated reactions. Acta Metall. 4, 449 1956CrossRefGoogle Scholar
41Shepilov, M.P.Baik, D.S.: Computer simulation of crystallization kinetics for the model with simultaneous nucleation of randomly oriented ellipsoidal crystals. J. Non-Cryst. Solids 171, 141 1994CrossRefGoogle Scholar
42Belenkii, V.Z.: Generalization of the Kolmogorov model for the crystallization in a bounded space with an arbitrary region of nucleation. Dokl. Akad. Nauk SSSR 278, 874 1984Google Scholar
43Weinberg, M.C.Kapral, R.: Phase-transformation kinetics in finite inhomogeneously nucleated systems. J. Chem. Phys. 91, 7146 1989CrossRefGoogle Scholar
44Weinberg, M.C.: Transformation kinetics of particles with surface and bulk nucleation. J. Non-Cryst. Solids 142, 126 1992CrossRefGoogle Scholar
45Vázquez, J., García-Barreda, D., López-Alemany, P.L., Villares, P.Jimenez-Garay, R.: A comparative study on the single-scan and multiple-scan techniques in differential scanning calorimetry: Application to the crystallization of the semiconducting Ge0.13Sb0.23Se0.64 alloy. Thermochim. Acta 430, 173 2005CrossRefGoogle Scholar
46Pineda, E.Crespo, D.: Microstructure development in Kolmogorov, Johnson–Mehl, and Avrami nucleation and growth kinetics. Phys. Rev. B 60, 3104 1999CrossRefGoogle Scholar