Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T10:30:53.548Z Has data issue: false hasContentIssue false

Solid solution directionally solidified eutectic oxide composites: Part II. Co1-xNixO single-crystal growth and characterization

Published online by Cambridge University Press:  31 January 2011

L. N. Brewer
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
V. P. Dravid
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
M. Velázquez
Affiliation:
Laboratoire de Physico-chimie de l'Etat Solide, Universite’ de Paris—Sud Centre d'Orsay, France
A. Revcolevschi
Affiliation:
Laboratoire de Physico-chimie de l'Etat Solide, Universite’ de Paris—Sud Centre d'Orsay, France
Get access

Abstract

The growth and structure of the Co1−xNixO series of single crystals with 0 ≤ x ≤ 1 were investigated with the goal of achieving a single-phase crystal over several centimeters of bulk growth. The single crystals were grown via the floating zone method controlling the partial pressure of oxygen to prevent secondary phase precipitation. The resulting crystals were single phase for all compositions. CoO was a single-domain crystal but contained microvoids. The lattice parameters followed a rule-of-mixtures trend, but the coefficient of thermal expansion exhibited a maximum in the middle of the solid solution, which was attributed to enhanced vacancy formation.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Revcolevschi, A. and Dhalenne, G., “Crystal Growth and Characterization of Some Transition Metal Oxides,” presented at the Basic Properties of Binary Oxides, Seville, Spain, 1983.Google Scholar
2Collongues, R., Revcolevschi, A., Saurat, M., and Dhalenne, G., Canadian Metall. Quarterly 13, 355 (1974).CrossRefGoogle Scholar
3Dhalenne, G., Revcolevschi, A., and Collongues, R., Mater. Res. Bull. 7, 933 (1972).CrossRefGoogle Scholar
4Domanska, E., Guzik, Z., Nedoma, J., and Oblakowski, J., Zesz. Nauk. Akad. Gorn. Hutn. 16, 7 (1970).Google Scholar
5Colomer, G., Dechamps, M., Dhalenne, G., and Revcolevschi, A., Sci. Ceram. 11, 177 (1981).Google Scholar
6Colomer, G., Dechamps, M., Dhalenne, G., and Revcolevschi, A., J. Cryst. Growth 56, 93 (1982).CrossRefGoogle Scholar
7Farhi, R., Petot-Ervas, G., Petot, C., Dhalenne, G., and LeGuern, F., J. Solid State Chem. 41, 147 (1982).CrossRefGoogle Scholar
8Burgeat, J., Primot, J., and Rustichelli, F., Z. Physik 238, 140 (1970).CrossRefGoogle Scholar
9Jouini, A. and Dufour, L.C., J. Cryst. 50, 873 (1980).CrossRefGoogle Scholar
10Jouini, A. and Dufour, L.C., J. Soc. Chim. Tunisie 9, 1 (1983).Google Scholar
11Revcolevschi, A., Rev. Int. Hautes Temp. Refract. 7, 73 (1970).Google Scholar
12Rodriguez-Carvajal, J., Physica B 192, 55 (1993).CrossRefGoogle Scholar
13Moore, R.J. and White, J., J. Mater. Sci. 9, 1393 (1974).CrossRefGoogle Scholar
14Taylor, D., Trans. J. Brit. Ceram. Soc. 83, 5 (1984).Google Scholar
15Touloukian, Y.S., in Thermophysical Properties of High Temperature Solid Materials (MacMillan, New York, 1967). Vol. 4.Google Scholar
16Kraftmakher, Y., Phys. Rep. 299, 79 (1998).CrossRefGoogle Scholar
17Wang, K. and Reeber, R.R., Phys. Status Solidii A146, 621 (1994).CrossRefGoogle Scholar
18Chen, W.K. and Peterson, N.L., J. Phys. Chem. Solids 34, 1093 (1973).CrossRefGoogle Scholar
19Filatov, S.K., Frank-Kamenetskii, V.A., and Zhuravina, T.A., Inorg. Mater. (Neorganicheskie Materialy) 5, 346 (1969).Google Scholar
20Dickey, E.C., Dravid, V.P., and Hubbard, C.R., J. Am. Ceram. Soc. 80, 2773 (1997).CrossRefGoogle Scholar
21Dickey, E.C., Frazer, C.S., Watkins, T.R., and Hubbard, C.R., J. Eur. Ceram. Soc. 19, 2503 (1999).CrossRefGoogle Scholar