Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T06:41:37.399Z Has data issue: false hasContentIssue false

Sol-Gel Synthesis of Highly Dispersed Cobalt Nanoparticles on Silica Thin Films

Published online by Cambridge University Press:  03 March 2011

S.M. Park
Affiliation:
Department of Chemical, Biomedical, and Materials Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030
W. Ki
Affiliation:
Department of Chemical, Biomedical, and Materials Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030
J. Yu
Affiliation:
Department of Chemical, Biomedical, and Materials Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030
H. Du
Affiliation:
Department of Chemical, Biomedical, and Materials Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030
Get access

Abstract

Cobalt nanoparticles were synthesized on silica thin films by heat treating Co/silica films spun on thermally oxidized Si substrates. The as-deposited films were calcined in vacuum (∼0.03 Torr) for 2 h at 500 °C, followed by reduction in hydrogen at 650 °C for up to 15 h. The reduction process is characterized as one of time-dependent evolution of nanoparticles in both physical appearance and phase nature, eventually leading to the formation of well-dispersed Co nanoparticles, as ascertained by x-ray photoelectron spectroscopy and scanning electron microscopy. Slow conversion of Co ions into metallic Co observed in this study is ascribed to the absence of a Co3O4 phase that forms predominantly during calcination in air. Atomic force microscopy revealed a marked increase in the surface roughness of the film due to the development of nanoparticles. A distinct duplex-layer structure was observed in the reduced film, which consisted of the upper layer laden with nanoparticles and the lower layer essentially particle-free. The growth of the upper layer appears to be controlled by the upward diffusion of Co2+ in the film during the reduction process.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Zhang, W.D., Wen, Y., Tjiu, W.C., Xu, G.Q. and Gan, L.M.: Synthesis of vertically aligned carbon nanotubes on metal deposited quartz plates. Carbon 40, 1981 (2002).CrossRefGoogle Scholar
2Weidenkaff, A., Ebbinghaus, S.G., Mauron, Ph., Reller, A., Zhang, Y. and Zuttel, A.: Metal nanoparticles for the production of carbon nanotube composite materials by decomposition of different carbon sources. Mater. Sci. Eng., C 19, 119 (2002).CrossRefGoogle Scholar
3Lee, C.J. and Park, J.: Growth and structure of carbon nanotubes produced by thermal chemical vapor. Carbon 39, 1891 (2001).CrossRefGoogle Scholar
4Hofmann, S., Kleinsorge, B., Ducati, C., Ferrari, A.C. and Robertson, J.: Low-temperature plasma enhanced chemical vapour deposition of carbon nanotubes. Diamond Relat. Mater. 13, 1171 (2004).CrossRefGoogle Scholar
5Matsuzaki, T., Takeuchi, K., Hanoaka, T.A., Arakawa, H. and Sugi, Y.: Hydrogenation of carbon monoxide over highly dispersed cobalt catalysts derived from cobalt (II) acetate. Catal. Today 28, 251 (1996).CrossRefGoogle Scholar
6Kukoveca, A., Konya, Z., Nagaraju, N., Willems, I., Tamasi, A., Fonseca, A., Nagy, J.B. and Kirisci, I.: Catalytic synthesis of carbon nanotubes over Co, Fe and Ni containing conventional and sol.gel silica.aluminas. Phys. Chem. Chem. Phys. 2, 3071 (2000).CrossRefGoogle Scholar
7Cheung, C.L., Kurtz, A., Park, H. and Lieber, C.M.: Diameter controlled synthesis of carbon nanotubes. J. Phys. Chem. B 106, 2429 (2002).CrossRefGoogle Scholar
8Nerushev, O.A., Dittmar, S., Morjan, R-E., Rohmund, F. and Campbell, E.E.B.: Particle size dependence and model for iron-catalyzed growth of carbon nanotubes by thermal chemical vapor deposition. J. Appl. Phys. 93, 4185 (2003).CrossRefGoogle Scholar
9Huh, Y., Lee, J.Y., Cheon, J., Hong, Y.K., Koo, J.Y., Lee, T.J. and Lee, C.J.: Controlled growth of carbon nanotubes over cobalt nanoparticles by thermal chemical vapor deposition. J. Mater. Chem. 13, 2297 (2003).CrossRefGoogle Scholar
10Nath, M., Satishkumar, B.C., Govindaraj, A., Vinod, C.P. and Rao, C.N.R.: Formation of bundles of aligned carbon and carbon-nitrogen nanotubes on silica-supported iron and cobalt catalysts. Chem. Phys. Lett. 322, 333 (2000).CrossRefGoogle Scholar
11Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A. and Wang, G.: Large-scale synthesis of aligned carbon nanotubes. Science 274, 1701 (1996).CrossRefGoogle ScholarPubMed
12Ago, H., Komatsu, T., Ohshima, S., Kuriki, Y. and Yumura, M.: Dispersion of metal nanoparticles for aligned carbon nanotube arrays. Appl. Phys. Lett. 77(1), 79 (2000).CrossRefGoogle Scholar
13Torrones, M., Grobert, N., Olivares, J., Zhang, J.P., Terrones, H., Kordatos, K., Hsu, W.K., Hare, J.P., Townsend, P.D., Prassides, K., Cheetham, A.K., Kroto, H.W. and Walton, D.R.M.: Controlled production of aligned-nanotube bundles. Nature 388, 52 (1997).CrossRefGoogle Scholar
14Cassell, A.M., Verma, S., Delzeit, L., Meyyappan, M. and Han, J.: Combinatorial optimization of heterogeneous catalysts used in the growth of carbon nanotubes. Langmuir 17, 260 (2001).CrossRefGoogle Scholar
15Cano, F.M., Gijzeman, O.L.J., de Groot, F.M.F. and Weckhuysen, B.M.: Manganese promotion in cobalt-based Fischer– Tropsch catalysis. Stud. Surf. Sci. Catal. 147, 271 (2004).CrossRefGoogle Scholar
16Jablonski, J.M., Okal, J., Potoczna-Petru, D. and Krajczyk, L.: High temperature reduction with hydrogen, phase composition, and activity of cobalt/silica catalysts. J. Catal. 220, 146 (2003).CrossRefGoogle Scholar
17Reuel, R.C. and Bartholomew, C.H.: Effects of support and dispersion on the CO hydrogenation activity/selectivity properties of Cobalt. J. Catal. 85, 78 (1984).CrossRefGoogle Scholar
18Backman, L.B., Rautiainen, A., Lindblad, M. and Krause, A.O.I.: Effect of support and calcination on the properties of cobalt catalysts prepared by gas phase deposition. Appl. Catal., A 191, 55 (2000).CrossRefGoogle Scholar
19Sun, S., Tsubaki, N. and Fujimoto, K.: The reaction performances and characterization of Fischer-Tropsch synthesis Co/SiO2 catalysts prepared from mixed cobalt salts. Appl. Catal., A 202, 121 (2000).CrossRefGoogle Scholar
20Panpranot, J., Kaewkun, S., Praserthdam, P., Goodwin, J.G. Jr.: Effect of cobalt precursors on the dispersion of cobalt on MCM-41. Catal. Lett. 91, 95 (2003).CrossRefGoogle Scholar
21Riva, R., Miessner, H., Vitali, R. and Piero, G. Del: Metal-support interactionin Co/SiO2 and Co/TiO2. Appl. Catal., A 196, 111 (2000).CrossRefGoogle Scholar
22Tsubaki, N., Sun, S. and Fujimoto, K.: Different functions of the noble metals added to cobalt catalysts for Fischer–Tropsch synthesis. J. Catal. 199, 236 (2001).CrossRefGoogle Scholar
23Khodakov, A.Y., Lunch, J., Bazin, D., Rebours, B., Zanier, N., Moisson, B. and Chaumette, P.: Reducibility of cobalt species in silica-supported Fischer–Tropsch catalysts. J. Catal. 168, 16 (1997).CrossRefGoogle Scholar
24Panpranot, J., Goodwin, J.G. Jr. and Sayari, A.: CO hydrogenation on Ru-promoted Co/MCM-41 catalysts. J. Catal. 211, 530 (2002).CrossRefGoogle Scholar
25Barbier, A., Hanif, A., Dalmon, J. and Martin, G.A.: Preparation and characterization of well-dispersed and stable Co/SiO2 catalysts using the ammonia method. Appl. Catal., A 168, 333 (1998).CrossRefGoogle Scholar
26Lok, C.M., Gray, G., and Kelly, G.J.: Catalysts with high cobalt surface area. International Patent Publication Number, WO 01/87480 A1 (2001).Google Scholar
27Iglesia, E.: Natural Gas Conversion IV, Studies in Surface Science and Catalysis, (Elsevier Science B.V, Amsterdam, The Netherlands, 1997), p. 153, 107.Google Scholar
28Jozwiak, W.K., Szubiakiewicz, E., Goralski, J., Klonkowski, A. and Paryjczak, T.: Physico-chemical and catalytic study of the Co/SiO2 catalysts. Kinetics Catal. 45, 247 (2004).CrossRefGoogle Scholar
29Dawnay, E.J.C., Fardad, M.A., Green, M. and Yeatman, E.M.: Growth and characterization of semiconductor nanoparticles in porous sol-gel films. J. Mater. Res. 12, 3115 (1997).CrossRefGoogle Scholar
30Yang, P., Song, C.F., Lu, M.K., Yin, X., Zhou, G.J., Xu, D. and Yuan, D.R.: The luminescence of PbS nanoparticles embedded in sol-gel silica glass. Chem. Phys. Lett. 345, 429 (2001).CrossRefGoogle Scholar
31Martucci, A., Fick, J., Schell, J., Battaglin, G. and Guglielmi, M.: Microstructural and nonlinear optical properties of silica–titania sol-gel film doped with PbS quantum dots. J. Appl. Phys. 86, 79 (1999).CrossRefGoogle Scholar
32Potoczna-Petru, D. and Krajczyk, L.: Spreading of cobalt phase and silicate formation in Co/SiO2 model catalyst. Catal. Lett. 87, 51 (2003).CrossRefGoogle Scholar
33Hudon, P. and Baker, D.R.: The nature of phase separation in binary oxide melts and glasses. I. Silicate systems. J. Non-Cryst. Solids 303, 299 (2002).CrossRefGoogle Scholar
34Alstrup, I., Chorkendorff, I., Candia, R., Clausen, B.S. and Topsøe, H.: A combined x-ray photoelectron and Mössbauer emission spectroscopy study of the state of cobalt in sulfided, supported and unsupported Co–Mo catalysts. J. Catal. 77, 397 (1982).CrossRefGoogle Scholar
35Xu, Z.P. and Zeng, H.C.: Thermal evolution of cobalt hydroxides: A comparative study of their various structural phases. J. Mater. Chem. 8, 2499 (1998).CrossRefGoogle Scholar
36Oku, M. and Sato, Y.: In-situ x-ray photoelection spectroscopic study of the reversible phase transition between CoO and Co3O4 in oxygen of 10−3 Pa. Appl. Surf. Sci. 55, 37 (1992).CrossRefGoogle Scholar
37Saib, A.M., Claeys, M. and van Steen, E.: Silica supported cobalt Fischer–Tropsch catalysts: Effect of pore diameter of support. Catal. Today 71, 395 (2002).CrossRefGoogle Scholar
38Castner, D.G., Watson, P.R. and Chan, I.Y.: X-ray absorption spectroscopy, x-ray photoelectron spectroscopy, and analytical electron microscopy studies of cobalt catalysts. 2. Hydrogen reduction properties. J. Phys. Chem. 94, 819 (1990).CrossRefGoogle Scholar
39Soares, A.C. Sabioni and Wuensch, B.J.: Grain-boundary diffusion of Co2+ in ZnO (http://web.mit.edu/cmse/www/Wuensch97.pdf, 1997).Google Scholar
40Prokpenko, V.B., Gurin, V.S., Alexeenko, A.A., Kulikauskas, V.S. and Kovalenko, D.L.: Surface segregation of transition metals in sol-gel silica films. J. Phys. D: Appl. Phys. 33, 3152 (2000).CrossRefGoogle Scholar
41Ramos-Mendoza, A., Tototzintle-Huitle, H., Mendoza-Galvan, A. and Gonzalez-Hernandez, J.: Optical and structural properties of sol-gel SiO2 layers containing cobalt. J. Vac. Sci. Technol. A 19, 1600 (2001).CrossRefGoogle Scholar