Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-24T14:51:53.932Z Has data issue: false hasContentIssue false

Small scale mechanical testing of irradiated materials

Published online by Cambridge University Press:  27 April 2015

P. Hosemann*
Affiliation:
Department of Nuclear Engineering, University of California Berkeley, Berkeley 94720, California, USA
C. Shin
Affiliation:
Department of Materials Science and Engineering, Myongji University, Yongin 449-728, Korea
D. Kiener
Affiliation:
Department Materials Physics, Montanuniversität Leoben, Leoben 8700, Austria
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Small specimen testing techniques have a long history in nuclear material research due to the limitations posed by nuclear facilities. The limited space in reactors and the fact that the samples are oftentimes radioactive in addition to the increasing need to obtain mechanical properties from ion beam irradiated samples require small specimen mechanical testing. With the application of modern focused ion beam sample preparation techniques and the enhancement of nanoindentation instruments, the size scale has been moved to even smaller scales and new geometries. Micrometer and even nanometer size samples are feasible, but raise the question of comparability to large scale properties for engineering applications. In this review, we summarize available small scale materials testing techniques and potential shortcomings based on examples from the literature, as well as introduce novel experimental approaches conducted using microcompression testing, microbend bar testing, and nanoindentation at ambient and nonambient conditions.

Type
Invited Reviews
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Djamel Kaoumi

References

REFERENCES

Wigner, E.P.: Theoretical physics in the metallurgical laboratory of Chicago. J. Appl. Phys. 17(11), 857 (1946).Google Scholar
Dienes, G.J.: Radiation effects in solids. Annu. Rev. Nucl. Sci. 2, 187220 (1953).Google Scholar
Zinkle, S.J.: Fusion materials science: Overview of challenges and recent progress. Phys. Plasmas 12, 058101 (2005).Google Scholar
Zinkle, S.J.: Advanced materials for fusion technology. Fusion Eng. Des. 74, 3140 (2005).CrossRefGoogle Scholar
Zinkle, S.J. and Was, G.S.: Materials challenges in nuclear energy. Acta Mater. 61, 735758 (2013).Google Scholar
Yvon, P. and Carre, F.: Structural materials challenges for advanced reactor systems. J. Nucl. Mater. 31, 217222 (2009).Google Scholar
Murty, K.L. and Charit, I.: Structural materials for Gen-IV nuclear reactors: Challenges and opportunities. J. Nucl. Mater. 383, 189195 (2008).Google Scholar
Barabash, V., Fabritsiev, S., Kalinin, G., Zinkle, S., Rowcliffe, A., Rensman, J-W., Tavassoli, A.A., Marmy, P., Karditsas, P.J., Gillemot, F., and Akiba, M.: Materials challenges for ITER—Current status and future activities. J. Nucl. Mater. 367370, 2132 (2007).Google Scholar
Allen, T., Busby, J., Meyer, M., and Petti, D.: Materials challenges for nuclear systems. Mater. Today 13, 1423 (2010).Google Scholar
Zhang, H-K., Yao, Z., Morin, G., and Griffiths, M.: TEM characterization of in-reactor neutron irradiated CANDU spacer material Inconel X-750 J. J. Nucl. Mater. 451, 8896 (2014).Google Scholar
Hamase, E., Saito, M., Sagara, H., and Han, C.Y.: Long-life fast breeder reactor with highly protected Pu breeding by introducing axial inner blanket and minor actinides. Ann. Nucl. Energy 44, 87102 (2012).Google Scholar
Bailey, N., Sterger, E., Toloczko, M., and Hosemann, P.: Initial APT analysis of irradiated MA957. Microsc. Microanal. 18(Suppl. 2), 14181419 (2012).Google Scholar
Anderoglu, O., Van den Bosch, J., Hosemann, P., Stergar, E., Sencer, B.H., Bhattacharyya, D., Dickerson, R., Dickerson, P., Hartl, M., and Maloy, S.A.: Phase stability of an HT-9 duct irradiated in FFTF. J. Nucl. Mater. 430, 194204 (2012).Google Scholar
Toloczko, M.B., Garner, F.A., and Eiholzer, C.R.: Irradiation creep and swelling of the US fusion heats of HT9 and 9Cr-1Mo to 208 dpa at ∼ 400°C. J. Nucl. Mater. 212215, 604607 (1994).Google Scholar
Garner, F.A. and Porter, D.L.: Irradiation creep and swelling of AISI 316 to exposures of 130 dpa at 385-400 °C. J. Nucl. Mater. 155157, 10061013 (1988).Google Scholar
Gelles, D.S.: Microstructural examination of several commercial alloys neutron irradiated to 100 dpa. J. Nucl. Mater. 148, 136144 (1987).CrossRefGoogle Scholar
Hosemann, P.: Studying radiation damage in structural materials by using ion accelerators. Rev. Accel. Sci. Technol. 4, 161182 (2011).CrossRefGoogle Scholar
Kiener, D., Minor, A., Maloy, S.A., and Hosemann, P.: Application of small scale testing to investigate ion beam irradiated materials. J. Mater. Res. 27, 27242736 (2012).Google Scholar
Was, G.S.: Fundamentals of Radiation Materials Science: Metals and Alloys (Springer, Berlin, 2007). ISBN 978-3-540-49472-0.Google Scholar
Kulcinski, G.L., Brimhall, J.L., and Kissinger, H.E.: Production of voids in nickel with high energy selenium ions. J. Nucl. Mater. 40, 166174 (1971).CrossRefGoogle Scholar
Corbett, J.W., Denny, J.M., Fiske, M.O., and Walker, R.M.: Electron irradiation of copper near 10°K. Phys. Rev. 108, 954 (1957).CrossRefGoogle Scholar
Corbett, J.W., Smith, R.B., and Walker, R.M.: Discrete recovery spectrum below 65°K in irradiated copper. Phys. Rev. 114, 1452, 1460 (1958).CrossRefGoogle Scholar
Tanaka, T., Oka, K., Ohnuki, S., Yamashita, S., Suda, T., Watanabe, S., and Wakai, E.: Synergistic effect of helium and hydrogen for defect evolution under multi-ion irradiation of Fe–Cr ferritic alloys. J. Nucl. Mater. 329333, 294298 (2004).Google Scholar
Kohyama, A., Katoh, Y., Ando, M., and Jimbo, K.: A new multiple beams–material interaction research facility for radiation damage studies in fusion materials. Fusion Eng. Des. 5152, 789795 (2000).Google Scholar
Yamamoto, T., Wu, Y., Odette, G.R., Yabuuchi, K., Kondo, S., and Kimura, A.: A dual ion irradiation study of helium–dpa interactions on cavity evolution in tempered martensitic steels and nanostructured ferritic alloys. J. Nucl. Mater. 449, 190199 (2014).Google Scholar
Oliver, W.C. and Pharr, G.M.: An improved technique to determine hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).Google Scholar
Fischer-Cripps, A.C.: Nanoindentation (Springer, New York, 2004). ISBN: 978-1-4419-9871-2.CrossRefGoogle Scholar
Hosemann, P., Kiener, D., Wang, Y., and Maloy, S.A.: Issues to consider using nano indentation on low energy ion implanted materials. J. Nucl. Mater. 425, 136139 (2012).Google Scholar
Dayal, P., Bhattacharyya, D., Mook, W.M., Fu, E.G., Wang, Y-Q., Carr, D.G., Anderoglu, O., Mara, N.A., Misra, A., Harrison, R.P., and Edwards, L.: Effect of double ion implantation and irradiation by Ar and He ions on nano-indentation hardness of metallic alloys. J. Nucl. Mater. 438(1–3), 108115 (2013).Google Scholar
Hardie, C.D. and Roberts, S.G.: Nanoindentation of model Fe–Cr alloys with self-ion irradiation. J. Nucl. Mater. 433, 17179 (2013).CrossRefGoogle Scholar
Hardie, C.D., Williams, C.A., Xu, S., and Roberts, S.G.: Effects of irradiation temperature and dose rate on the mechanical properties of self-ion implanted Fe and Fe–Cr alloys. J. Nucl. Mater. 439, 3340 (2013).Google Scholar
Chen, C-L., Richter, A., Kögler, R., and Talut, G.: Dual beam irradiation of nanostructured FeCrAl oxide dispersion strengthened steel. J. Nucl. Mater. 412, 350358 (2011).Google Scholar
Heintze, C., Berger, F., Koegler, R., and Lindau, R.: The influence of helium and ODS on the irradiation-induced hardening of Eurofer 97 at 300°C. Adv. Sci. Technol. 73, 124129 (2010).Google Scholar
Yang, Y., Kang, S., Zhang, C., and Jang, J.: Nanoindentation on an oxide dispersion strengthened steel and a ferritic/martensitic steel implanted with He ions. J. Nucl. Mater. 455, 325329 (2014).Google Scholar
Rice, P.M. and Stoller, R.E.: The effect of solutes on defect distributions and hardening in ion-irradiated model ferritic alloys. J. Nucl. Mater. 244, 219226 (1997).Google Scholar
Rice, P.M., Stoller, R.E., Lucas, B.N., and Oliver, W.C.: Microstructural and mechanical property changes in model Fe-Cu alloys. Mater. Res. Soc. Proc. 373, 149 (1995).CrossRefGoogle Scholar
Hosemann, P., Swadener, J.G., Kiener, D., Was, G.S., Maloy, S.A., and Li, N.: An exploratory study to determine applicability of nano-hardness and micro-compression measurements for yield stress estimation. J. Nucl. Mater. 375, 135143 (2008).Google Scholar
Snead, L.L., ZinkIe, S.J., and Steiner, D.: Radiation induced microstructure and mechanical property evolution of SiC/C/SiC composite materials. J. Nucl. Mater. 191194, 560565 (1992).Google Scholar
Reichardt, A., Lupinacci, A., Kacher, J., Jiao, Z., Chou, P., Abad, M., Minor, A., and Hosemann, P.: Development of small scale mechanical testing techniques on ion beam irradiated 304 SS. In Proceedings of Fontevraud 8—Contribution of Materials Investigations and Operating Experience to LWRs’ Safety, Performance and Reliability France, Avignon, September, 2013.Google Scholar
Xiaodong, L. and Bharat, B.: A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 1136 (2002).Google Scholar
Lucas, B.N., Oliver, W.C., and Swindeman, J.E.: The dynamics of frequency-specific, depth-sensing indentation testing. Fundamentals of Nanoindentation and Nanotribology. MRS Symp Proc. 522, 314 (1998).Google Scholar
Shin, C., Jin, H-H., and Kim, M-W.: Evaluation of the depth-dependent yield strength of a nanoindented ion-irradiated Fe–Cr model alloy by using a finite element modeling. J. Nucl. Mater. 392, 476481 (2009).Google Scholar
Kasada, R., Takayama, Y., Yabuuchi, K., and Kimura, A.: A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques. Fusion Eng. Des. 86, 26582661 (2011).Google Scholar
Roldán, M., Fernández, P., Rams, J., Jiménez-Rey, D., Ortiz, C.J., and Vila, R.: Effect of helium implantation on mechanical properties of EUROFER97 evaluated by nanoindentation. J. Nucl. Mater. 448, 301309 (2014).Google Scholar
Maier, V., Durst, K., Mueller, J., Backes, B., Höppel, H.W., and Göken, M.: Nanoindentation strain rate jump tests for determining the local strain rate sensitivity of nc Ni and UFG Al. J. Mater. Res. 26, 1421 (2011).Google Scholar
Huber, N., Tyulyukovskiy, E., Schneider, H-C., Rolli, R., and Weick, M.: An indentation system for determination of viscoplastic stress–strain behavior of small metal volumes before and after irradiation. J. Nucl. Mater. 377, 352358 (2008).Google Scholar
Shinohara, K., Lucas, G.E., and Odette, G.R.: Shear punch and ball micro hardness measurements of 14 MeV neutron irradiation hardening in five metals. J. Nucl. Mater. 133134, 326331 (1985).CrossRefGoogle Scholar
Sacksteder, I. and Schneider, H-C.: Development of an instrumented indentation device for further characterization of irradiated steels at high temperature. Fusion Eng. Des. 86, 25652568 (2011).Google Scholar
Everitt, N.M., Davies, M.I., and Smith, J.F.: High temperature nanoindentation—The importance of isothermal contact. Philos. Mag. 91, 1221 (2011).Google Scholar
Wheeler, J.M., Brodard, P., and Michler, J.: Elevated temperature, in situ indentation with calibrated contact temperatures. Philos. Mag. 92, 31283141 (2012).Google Scholar
Duan, Z.C. and Hodge, A.M.: High-temperature nanoindentation: New developments and ongoing challenges. JOM 61, 3236 (2009).Google Scholar
Beaker, B.D. and Smith, J.F.: High-temperature nanoindentation testing of fused silica and other materials. Philos. Mag. A 82, 21792186 (2002).CrossRefGoogle Scholar
Wheeler, J.M. and Michler, J.: Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope. Rev. Sci. Instrum. 84, 045103 (2013).Google Scholar
Wheeler, J.M., Maier, V., Durst, K., Göken, M., and Michler, J.: Activation parameters for deformation of ultrafine-grained aluminium as determined by indentation strain rate jumps at elevated temperature. Mater. Sci. Eng., A 585, 108113 (2013).CrossRefGoogle Scholar
Beake, B.D., Bell, G.A., Goodes, S.R., Pickford, N.J., and Smith, J.F.: Improved nanomechanical test techniques for surface engineered materials. Surf. Eng. 26 3749 (2010).Google Scholar
Korte, S., Stearn, R.J., Wheeler, J.M., and Clegg, W.J.: High temperature microcompression and nanoindentation in vacuum. J. Mater. Res. 27, 167 (2012).Google Scholar
Busby, J.T., Hash, M.C., and Was, G.S.: The relationship between hardness and yield stress in irradiated austenitic and ferritic steels. J. Nucl. Mater. 336, 267278 (2005).Google Scholar
Lupinacci, A., Chen, K., Li, Y., Kunz, M., Jiao, Z., Was, G.S., Abad, M., Minor, A.M., and Hosemann, P.: Characterization of ion beam irradiated 304 stainless steel utilizing nanoindentation and Laue microdiffraction. J. Nucl. Mater. 458, 7076 (2015).CrossRefGoogle Scholar
Lupinacci, A., Hosemann, P., Minor, A., and Shapiro, A.: In-situ SEM characterization of fracture behavior. Microsc. Microanal. 18(Suppl. 2), 792793 (2012).CrossRefGoogle Scholar
Lupinacci, A., Kacher, J., Eilenberg, A., Shapiro, A.A., Hosemann, P., and Minor, A.M.: Cryogenic in situ microcompression testing of Sn. Acta Mater. 78, 5664 (2014).CrossRefGoogle Scholar
Lee, S-W., Meza, L., and Greer, J.R.: Cryogenic nanoindentation size effect in [0 0 1]-oriented face-centered cubic and body centered cubic single crystals. Appl. Phys. Lett. 103(10), 101906 (2013).Google Scholar
Maier, V., Merle, B., Göken, M., and Durst, K.J.: An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures. J. Mater. Res. 28(9), 1177 (2013).Google Scholar
Geranmayeh, A.R., Mahmudi, R., Khalatbari, F., Kashi, N., and Nayyeri, G.: Indentation creep of Lead-Free Sn-5Sb solder alloy with 1.5 wt% Ag and Bi additions. J. Electron. Mater. 43, 717723 (2014).Google Scholar
El-Bediwi, A., Lashin, A.R., Mossa, M., and Kamal, M.: Indentation creep and mechanical properties of quaternary Sn–Sb based alloys. Mater. Sci. Eng., A 528, 35683572 (2011).Google Scholar
Huang, Z., Harris, A., Maloy, S.A., and Hosemann, P.: Nanoindentation creep study on an ion beam irradiated oxide dispersion strengthened alloy. J. Nucl. Mater. 451, 162167 (2014).Google Scholar
Zhu, X.Y., Liu, X.J., Zenf, F., and Pan, F.: Size dependence of creep behavior in nanoscale Cu/Co multilayer thin films. J. Alloys Compd. 506, 434440 (2010).Google Scholar
Fischer-Cripps, A.C.: A simple phenomenological approach to nanoindentation creep. Mater. Sci. Eng., A 385 7482 (2004).CrossRefGoogle Scholar
Syed Asif, S.A. and Pethica, J.B.: Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos. Mag. A 76(6), 11051118 (1997).CrossRefGoogle Scholar
Uchic, M., Dimiduk, D.M., Florando, J.N., and Nix, W.D.: Sample dimensions influence strength and Crystal Plasticity. Science 305, 986989 (2004).Google Scholar
Shin, C., Jin, H.H., Kim, W., and Park, J.: Mechanical properties and deformation of cubic silicon carbide micropillars in compression at room temperature. J. Am. Ceram. Soc. 95(9), 29442950 (2012).Google Scholar
Shin, C., Jin, H.H., Sung, H., Kim, D-J., Choi, Y.S., and Oh, K.: Evaluation of irradiation effects on fracture strength of silicon carbide using micropillar compression tests. Exp. Mech. 53(4), 687697 (2013).Google Scholar
Burek, M.J. and Greer, J.R.: Fabrication and microstructure control of nanoscale mechanical testing specimens via electron beam lithography and electroplating. Nano Lett. 10, 6976 (2010).Google Scholar
Lee, G., Kim, J-Y., Budiman, A.S., Tamura, N., Kunz, M., Chen, K., Burek, M.J., Greer, J.R., and Tsui, T.Y.: Fabrication, structure and mechanical properties of indium nanopillars. Acta Mater. 58, 13611368 (2010).Google Scholar
Bei, H., Shim, S., Pharr, G.M., and George, E.P.: Effects of pre-strain on the compressive stress–strain response of Mo-alloy single-crystal micropillars. Acta Mater. 56, 47624770 (2008).Google Scholar
Kiener, D., Zhang, Z., Šturm, S., Cazottes, S., Imrich, P.J., Kirchlechner, C., and Dehm, G.: Advanced nanomechanics in the TEM: Effects of thermal annealing on FIB prepared Cu samples. Philos. Mag. 92(25–27), 32693289 (2012).Google Scholar
Kiener, D., Motz, C., Rester, M., Jenko, M., and Dehm, G.: FIB damage of Cu and possible consequences for miniaturized mechanical tests. Mater. Sci. Eng., A 459, 262272 (2007).Google Scholar
Knipling, K.E., Rowenhorst, D.J., Fonda, R.W., and Spanos, G.: Effects of focused ion beam milling on austenite stability in ferrous alloys. Mater. Charact. 61, 16 (2010).CrossRefGoogle Scholar
Shan, Z.W., Mishra, R.K., Syed Asif, S.A., Warren, O.L., and Minor, A.M.: Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115119 (2007).Google Scholar
Greer, J.R. and De Hosson, J.T.M.: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654 (2011).CrossRefGoogle Scholar
Kiener, D., Motz, C., and Dehm, G.: Micro-compression testing: A critical discussion of experimental constraints. Mater. Sci. Eng., A 505, 79 (2009).Google Scholar
Kiener, D. and Minor, A.M.: Achieving the ideal strength in annealed molybdenum nanopillars. Acta Mater. 59, 1328 (2011).Google Scholar
Schuster, B.E., Wei, Q., Zhang, H., and Ramesh, K.T.: The design of accurate micro-compression experiments. Appl. Phys. Lett. 88, 103112 (2006).Google Scholar
Uchic, M.D. and Dimiduk, D.M.: A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing. Mater. Sci. Eng., A 400401, 268278 (2005).Google Scholar
Masuzawa, T.: State of the art of micromachining. CIRP Ann. 49, 473 (2000).Google Scholar
Nagamani Jaya, B. and Zafir Alam, Md.: Small-scale mechanical testing of materials: A review & case study. Curr. Sci. 105, 25 (2013).Google Scholar
Kraft, O., Gruber, P.A., Moenig, R., and Weygand, D.: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293317 (2010).Google Scholar
Dehm, G.: Miniaturized single-crystalline fcc metals deformed in tension: New insights in size-dependent plasticity. Prog. Mater. Sci. 54, 664 (2009).Google Scholar
Uchic, M.D., Shade, P.A., and Dimiduk, D.: Annu. Rev. Mater. Res. 39, 361 (2009).CrossRefGoogle Scholar
Brenner, S.S.: Growth and properties of “whiskers”. Science 128, 568575 (1958).Google ScholarPubMed
Nix, W.D.: Yielding and strain hardening of thin metal films on substrates. Scr. Mater. 39, 545554 (1998).CrossRefGoogle Scholar
Minor, A.M., Lilleodden, E.T., Jin, M., Stach, E.A., Chrzan, D.C., and Morris, J.W.: Room temperature dislocation plasticity in silicon. Philos. Mag. 85, 323330 (2005).Google Scholar
Ge, D., Minor, A.M., Stach, E.A., and Morris, J.W.: Size effects in the nanoindentation of silicon at ambient temperature. Philos. Mag. 86, 40694080 (2006).Google Scholar
Dimiduk, D.M., Woodward, C., LeSar, R., and Uchic, M.D.: Scale-free intermittent flow in crystal plasticity. Science 312, 11881190 (2006).Google Scholar
Greer, J.R. and Nix, W.D.: Size dependence in mechanical properties of gold at the micron scale in the absence of strain gradients. Appl. Phys. A: Mater. Sci. Process. 90, 203 (2008).Google Scholar
Volkert, C.A. and Lilleodden, E.T.: Size effects in the deformation of sub-micron au columns. Philos. Mag. 86, 55675579 (2006).Google Scholar
Frick, C.P., Clark, B.G., Orso, S., Schneider, A.S., and Arzt, E.: Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater. Sci. Eng., A 489, 319329 (2008).Google Scholar
Gianola, D.S. and Eberl, C.: Micro- and nanoscale tensile testing of materials. JOM 61, 2435 (2009).Google Scholar
Shim, S., Bei, H., George, E.P., and Pharr, G.M.: A different type of indentation size effect. Scr. Mater. 59, 10951098 (2008).Google Scholar
Shim, S., Bei, H., Miller, M.K., Pharr, G.M., and George, E.P.: Effects of focused ion beam milling on the compressive behavior of directionally solidified micropillars and the nanoindentation response of an electropolished surface. Acta Mater. 57(2), 503510 (2009).Google Scholar
Greer, J.R., Oliver, W.C., and Nix, W.D.: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 18211830 (2005).CrossRefGoogle Scholar
Jang, D. and Greer, J.R.: Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Scr. Mater. 64, 77 (2011).CrossRefGoogle Scholar
Gu, X.W., Loynachan, C.N., Wu, Z., Zhang, Y-W., Srolovitz, D.J., and Greer, J.R.: Size-dependent deformation of nanocrystalline Pt nanopillars. Nano Lett. 12, 6385 (2012).Google Scholar
Shin, C., Lim, S., Jin, H.H., Hosemann, P., and Kwon, J.: Specimen size effects on the weakening of a bulk metastable austenitic alloy. Mater. Sci. Eng., A 622, 6775 (2015).Google Scholar
Yang, B., Motz, C., Rester, M., and Dehm, G.: Yield stress influenced by the ratio of wire diameter to grain size—A competition between the effects of specimen microstructure and dimension in micro-sized polycrystalline copper wires. Philos. Mag. 92, 3243 (2012).Google Scholar
Chen, X.X. and Ngan, A.H.W.: Specimen size and grain size effects on tensile strength of Ag microwires. Scripta Mater. 64, 717720 (2011).Google Scholar
Kiener, D., Hosemann, P., Maloy, S.A., and Minor, A.M.: In situ nanocompression testing of irradiated copper. Nat. Mater. 10, 608613 (2011).Google Scholar
Lowry, M.B., Kiener, D., Le Blanc, M.M., Chisholm, C., Florando, J.N., Morris, J.W., and Minor, A.M.: Achieving the ideal strength in annealed molybdenum nanopillars. Acta Mater. 58, 5160 (2010).Google Scholar
Schneider, A.S., Kiener, D., Yakacki, C.M., Maier, H.J., Gruber, P.A., Tamura, N., Kunz, M., Minor, A.M., and Frick, C.P.: Influence of bulk pre-straining on the size effect in nickel compression pillars. Mater. Sci. Eng., A 559, 147 (2013).Google Scholar
Girault, B., Schneider, A.S., Frick, C.P., and Arzt, E.: Strength effects in micropillars of a dispersion strengthened superalloy. Adv. Eng. Mater. 12, 385 (2010).Google Scholar
Lilleodden, E.T. and Nix, W.D.: Microstructural length-scale effects in the nanoindentation behavior of thin gold films. Acta Mater. 54, 1583 (2006).CrossRefGoogle Scholar
Arzt, E.: Size effects in materials due to microstructural and dimensional constraints: A comparative review. Acta Mater. 46, 5611 (1998).Google Scholar
Pouchon, M.A., Chen, J., Ghisleni, R., Michler, J., and Hoffelener, W.: Characterization of irradiation damage of ferritic ODS, alloys with advanced micro-sample methods. Exp. Mech. 50, 7984 (2010).Google Scholar
Hosemann, P., Dai, Y., Stergar, E., Leitner, H., Olivas, E., Nelson, A.T., and Maloy, S.A.: Large and small scale materials testing of HT-9 irradiated in the STIP irradiation program. Exp. Mech. 51, 10951102 (2011).Google Scholar
Li, N., Mara, N.A., Wang, Y.Q., Nastasi, M., and Misra, A.: Compressive flow behavior of Cu thin films and Cu/Nb multilayers containing nanometer-scale helium bubbles. Scr. Mater. 64, 974977 (2011).Google Scholar
Grieveson, E.M., Armstrong, D.E.J., Xu, S., and Roberts, S.G.: Compression of self-ion implanted iron micropillars. J. Nucl. Mater. 430, 119124 (2012).Google Scholar
Landau, P., Guo, Q., Hosemann, P., Wang, Y., and Greer, J.R.: Deformation of as-fabricated and helium implanted 100nm-diameter iron nano-pillars. Mater. Sci. Eng., A 612, 316325 (2014).Google Scholar
Guo, Q., Landau, P., Hosemann, P., Wang, Y., and Greer, J.R.: Helium implantation effects on the compressive response of Cu nanopillars. Small 9, 691697 (2012).Google Scholar
Soler, R., Molina-Aldareguia, J.M., Segurado, J., Llorca, J., Merino, R.I., and Orera, V.M.: Micropillar compression of LiF [111] single crystals: Effect of size, ion irradiation and misorientation. Int. J. Plast. 36, 5063 (2012).Google Scholar
Korte, S. and Clegg, W.J.: Micropillar compression of ceramics at elevated temperatures. Scr. Mater. 60, 807 (2009).Google Scholar
Korte, S., Barnard, J.S., Stearn, R.J., and Clegg, W.J.: Deformation of silicon–insights from microcompression testing at 25–500 °C. Int. J. Plast. 27, 1853 (2011).Google Scholar
Wheeler, J.M., Niederberger, C., Tessarek, C., Christiansen, S., and Michler, J.: Extraction of plasticity parameters of GaN with high temperature, in situ micro-compression. Int. J. Plast. 40, 140151 (2013).CrossRefGoogle Scholar
Ozerinc, S., Averback, R.S., and King, W.P.: In situ creep measurements on micropillar samples during heavy ion irradiation. J. Nucl. Mater. 451, 104110 (2014).Google Scholar
Frazer, D., Bailey, N., and Hosemann, P.: Unpublished results.Google Scholar
Kiener, D., Grossinger, W., Dehm, G., and Pippan, R.: A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples. Acta Mater. 56, 580592 (2008).Google Scholar
Kiener, D., Kaufmann, P., and Minor, A.M.: Strength, hardening, and failure observed by in situ tem tensile testing. Adv. Eng. Mater. 14, 960967 (2012).Google Scholar
Kiener, D. and Minor, A.M.: Source truncation and exhaustion: Insights from quantitative in situ TEM tensile testing. Nano Lett. 11, 38163820 (2011).Google Scholar
Kim, J-Y., Jang, D., and Greer, J.R.: Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 58, 23552363 (2010).Google Scholar
Landau, P., Guo, Q., Hattar, K., and Greer, J.R.: The effect of He implantation on the tensile properties and microstructure of Cu/Fe nano-bicrystals. Adv. Funct. Mater. 23, 12811288 (2013).Google Scholar
Fujii, K. and Fukuya, K.: Development of micro tensile testing method in an FIB system for evaluating grain boundary strength. Mater. Trans. 52, 2024 (2011).Google Scholar
Haque, M.A. and Saif, M.T.A.: Microscale materials testing using MEMS actuators. Exp. Mech. 43, 248 (2003).Google Scholar
Haque, M.A., Espinosa, H.D., and Lee, H.J.: MEMS for in situ testing—Handling, actuation, loading, and displacement measurements. MRS Bull. 35, 375 (2010).CrossRefGoogle Scholar
Guo, H., Chen, K., Oh, Y., Wang, K., Dejoie, C., Syed Asif, S.A., Warren, O.L., Shan, Z.W., Wu, J., and Minor, A.M.: Mechanics and dynamics of the strain-induced M1-M2 structural phase transition in individual VO2 nanowires. Nano Lett. 10 32073213 (2011).Google Scholar
Chisholm, C., Bei, H., Lowry, M.B., Oh, J., Syed Asif, S.A., Warren, O.L., Shan, Z.W., George, E.P., and Minor, A.M.: Dislocation starvation and exhaustion hardening in Mo alloy nanofibers. Acta Mater. 60, 22582264 (2012).Google Scholar
Hosemann, P., Frazer, D., and Lupinacci, A.: Unpublished data 2014.Google Scholar
Reichardt, A. and Bhattacharyya, D.: Private communication.Google Scholar
Di Maio, D. and Roberts, S.G.: Measuring fracture toughness of coatings using focused-ion-beam-machined microbeams. J. Mater. Res. 20(2), 299 (2005).Google Scholar
Armstrong, D.E.J., Wilkinson, A.J., and Roberts, S.G.: Measuring anisotropy in Young’s modulus of copper using microcantilever testing. J. Mater. Res. 24, 3268 (2009).Google Scholar
Gong, J. and Wilkinson, A.J.: Anisotropy in the plastic flow properties of single-crystal α titanium determined from micro-cantilever beams. Acta Mater. 57, 56935705 (2009).Google Scholar
Matoy, K., Schönherr, H., Detzel, T., Schöberl, T., Pippan, R., Motz, C., and Dehm, G.: A comparative micro-cantilever study of the mechanical behavior of silicon based passivation films. Thin Solid Films 518, 247256 (2009).Google Scholar
Frazer, D., Abad, M.D., Back, C., Deck, C., and Hosemann, P.: Multi-scale characterization of SiC SiC composite materials. In Advanced Composites for Aerospace, Marine, and Land Applications, Sano, T., Srivatsan, T.S. and Paretti, M.W., eds. (John Wiley & Sons, Inc., Hoboken, NJ, 2014); 173.Google Scholar
Frazer, D., Abad, M.D., Krumwiede, D., Back, C.A., Khalifa, H.E., Deck, C.P., and Hosemann, P.: Localized mechanical property assessment of SiC/SiC composite materials. Composites, Part A in press doi:10.1016/j.compositesa.2014.11.008.CrossRefGoogle Scholar
Hosemann, P., Martos, J.N., Frazer, D., Vasudevamurthy, G., Byun, T.S., Hunn, J.D., Jolly, B.C., Terrani, K., and Okuniewski, M.: Mechanical characteristics of SiC coating layer in TRISO fuel particles. J. Nucl. Mater. 442, 133142 (2013).Google Scholar
Frazer, D., Hosemann, P., and Peralta, P.: Unpublished results.Google Scholar
Eberl, C., Gianola, D.S., and Hemker, K.J.: Mechanical characterization of coatings using microbeam bending and digital image correlation techniques. Exp. Mech. 50, 8597 (2010).Google Scholar
Legros, M., Gianola, D.S., and Motz, C.: Quantitative in situ mechanical testing. MRS Bull. 35 354360 (2010).Google Scholar
Sharpe, W.N.: Mechanical property measurement at the micro/nano-scale. Strain 44, 2026 (2008).Google Scholar
Hosemann, P.: Unpublished data.Google Scholar
Iqbal, F., Ast, J., Göken, M., and Durst, K.: Study of the fracture properties on a small scale by micro-cantilever tests. Acta Mater. 60 1193 (2012).Google Scholar
Wurster, S., Motz, C., Jenko, M., and Pippan, R.: Micrometer-sized specimen preparation based on ion slicing technique. Adv. Eng. Mater. 12, 61 (2010).Google Scholar
Wurster, S., Motz, C., and Pippan, R.: Characterization of the fracture toughness of micro-sized tungsten single crystal notched specimens. Philos. Mag. 92, 1803 (2012).Google Scholar
Hintsala, E., Jackson, J., Kiener, D., and Gerberich, W.W.: In situ measurements of free-standing, ultra-thin film cracking in bending, MSEA. Exp. Mech. (2015, submitted).Google Scholar
Hintsala, E., Kiener, D., and Gerberich, W.W.: Extreme ductility at the nanoscale in Fe-based alloys. Microsc. Microanal. 20(S3), 18761877 (2014).Google Scholar